forked from concatto/ttc-univali
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodularity_analysis.py
66 lines (44 loc) · 1.56 KB
/
modularity_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import pandas as pd
import numpy as np
import preprocessing
import community_detection
import network_utils
import modularity_analysis
import networkx as nx
def export_result(G, communities, file_name=None):
nodes = {
'Id': list(G.nodes()),
'Label': list(G.nodes()),
'ModularityClass': communities
}
nodes_df = pd.DataFrame.from_dict(nodes)
if file_name is not None:
nodes_df.to_csv(file_name)
return nodes_df
def analyze_threshold(rel_df, threshold):
print(threshold)
nodes = rel_df['Source'].unique()
print(len(nodes))
filtered_df = rel_df.copy(deep=True)
filtered_df = rel_df[rel_df['Level'] >= threshold]
result = community_detection.detect(filtered_df, resolution=0)
final_graph = result['graph']
final_communities = list(result['communities'])
highest = np.max(final_communities)
for node in nodes:
if final_graph.has_node(node) == False:
final_graph.add_node(node)
highest += 1
final_communities.append(highest)
# print("Node", node, "added with community", highest)
return export_result(final_graph, final_communities)
def analyze_scale(rel_df, exponent):
scaled_df = rel_df.copy(deep=True)
scaled_levels = scaled_df['Level'].map(lambda level: level ** exponent)
scaled_df['Level'] = scaled_levels
scaled_df['Weight'] = scaled_levels
# result = community_detection.detect(scaled_df, resolution=0)
result = community_detection.detect(scaled_df)
final_graph = result['graph']
final_communities = result['communities']
return export_result(final_graph, final_communities)