-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconvert-sorted-array-to-binary-search-tree.py
55 lines (48 loc) · 1.74 KB
/
convert-sorted-array-to-binary-search-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from __future__ import print_function
# Time: O(n)
# Space: O(logn)
#
# Given an array where elements are sorted in ascending order,
# convert it to a height balanced BST.
#
# Definition for a binary tree node
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution(object):
def sortedArrayToBST(self, nums):
"""
:type nums: List[int]
:rtype: TreeNode
"""
return self.sortedArrayToBSTRecu(nums, 0, len(nums))
def sortedArrayToBSTRecu(self, nums, start, end):
if start == end:
return None
mid = start + self.perfect_tree_pivot(end - start)
node = TreeNode(nums[mid])
node.left = self.sortedArrayToBSTRecu(nums, start, mid)
node.right = self.sortedArrayToBSTRecu(nums, mid + 1, end)
return node
def perfect_tree_pivot(self, n):
"""
Find the point to partition n keys for a perfect binary search tree
"""
x = 1
# find a power of 2 <= n//2
# while x <= n//2: # this loop could probably be written more elegantly :)
# x *= 2
x = 1 << (n.bit_length() - 1) # use the left bit shift, same as multiplying x by 2**n-1
if x // 2 - 1 <= (n - x):
return x - 1 # case 1: the left subtree of the root is perfect and the right subtree has less nodes
else:
return n - x // 2 # case 2 == n - (x//2 - 1) - 1 : the left subtree of the root
# has more nodes and the right subtree is perfect.
if __name__ == "__main__":
num = [1, 2, 3]
result = Solution().sortedArrayToBST(num)
print(result.val)
print(result.left.val)
print(result.right.val)