-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathkth-smallest-element-in-a-sorted-matrix.py
52 lines (46 loc) · 1.27 KB
/
kth-smallest-element-in-a-sorted-matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Time: O(k * log(min(n, m, k))), with n x m matrix
# Space: O(min(n, m, k))
# Given a n x n matrix where each of the rows and
# columns are sorted in ascending order,
# find the kth smallest element in the matrix.
#
# Note that it is the kth smallest element in the sorted order,
# not the kth distinct element.
#
# Example:
#
# matrix = [
# [ 1, 5, 9],
# [10, 11, 13],
# [12, 13, 15]
# ],
# k = 8,
#
# return 13.
# Note:
# You may assume k is always valid, 1 <= k <= n^2.
from heapq import heappush, heappop
class Solution(object):
def kthSmallest(self, matrix, k):
"""
:type matrix: List[List[int]]
:type k: int
:rtype: int
"""
kth_smallest = 0
min_heap = []
def push(i, j):
if len(matrix) > len(matrix[0]):
if i < len(matrix[0]) and j < len(matrix):
heappush(min_heap, [matrix[j][i], i, j])
else:
if i < len(matrix) and j < len(matrix[0]):
heappush(min_heap, [matrix[i][j], i, j])
push(0, 0)
while min_heap and k > 0:
kth_smallest, i, j = heappop(min_heap)
push(i, j + 1)
if j == 0:
push(i + 1, 0)
k -= 1
return kth_smallest