-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
259 lines (231 loc) · 10.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import argparse
import math
import json
import os
import torch
import torch.nn.functional as F
import torch.distributed as dist
from utils import setup_for_distributed, MetricLogger, SmoothedValue, load_model, save_model
import models_adapter
from video_dataset import VideoDataset
from configs import DATASETS
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, required=True,
help='model architecture name.')
parser.add_argument('--batch_size', type=int, default=16,
help='batch size per gpu')
parser.add_argument('--blr', type=float, default=1e-3,
help='base learning rate per 256 samples. actual base learning rate is linearly scaled '
'based on batch size.')
parser.add_argument('--lr', type=float,
help='constant base learning rate. overrides the --blr option.')
parser.add_argument('--weight_decay', type=float, default=1e-2,
help='optimizer weight decay.')
parser.add_argument('--epochs', type=int, default=10,
help='number of training epochs.')
parser.add_argument('--warmup_epochs', type=int, default=2,
help='number of warmup epochs.')
parser.add_argument('--eval_only', action='store_true',
help='only run evaluation.')
parser.add_argument('--save_dir', type=str,
help='directory to save the checkpoints in. if empty no checkpoints are saved.')
parser.add_argument('--auto_resume', action='store_true',
help='automatically resume from the last checkpoint.')
parser.add_argument('--auto_remove', action='store_true',
help='automatically remove old checkpoint after generating a new checkpoint.')
parser.add_argument('--save_freq', type=int, default=1,
help='save checkpoint every n epochs.')
parser.add_argument('--resume', type=str,
help='manually specify checkpoint to resume from. overrides --auto_resume and --pretrain.')
parser.add_argument('--pretrain', type=str,
help='initialize model from the given checkpoint, discard mismatching weights and '
'do not load optimizer states.')
parser.add_argument('--dataset', type=str, required=True, choices=DATASETS.keys(),
help='name of the dataset. the dataset should be configured in config.py.')
parser.add_argument('--mirror', action='store_true',
help='whether mirror augmentation (i.e., random horizontal flip) should be used during training.')
parser.add_argument('--spatial_size', type=int, default=224,
help='spatial crop size.')
parser.add_argument('--num_frames', type=int, default=8,
help='number of sampled frames per video.')
parser.add_argument('--sampling_rate', type=int, default=0,
help='interval between sampled frames. 0 means frames evenly covers the whole video '
'(i.e., with variable frame interval depending on the video length).)')
parser.add_argument('--num_spatial_views', type=int, default=1, choices=[1, 3],
help='number of spatial crops used for testing (only 1 and 3 supported currently).')
parser.add_argument('--num_temporal_views', type=int, default=1,
help='number of temporal crops used for testing.')
parser.add_argument('--auto_augment', type=str,
help='enable RandAugment of a certain configuration. see the examples in the SSv2 training scripts.')
parser.add_argument('--num_workers', type=int, default=16,
help='number of dataloader workers.')
parser.add_argument('--resize_type', type=str, default='random_resized_crop',
choices=['random_resized_crop', 'random_short_side_scale_jitter'],
help='spatial resize type. supported modes are "random_resized_crop" and "random_short_side_scale_jitter".'
'see implementation in video_dataset/transform.py for the details.')
parser.add_argument('--scale_range', type=float, nargs=2, default=[0.08, 1.0],
help='range of spatial random resize. for random_resized_crop, the range limits the portion of the cropped area; '
'for random_short_side_scale_jitter, the range limits the target short side (as the multiple of --spatial_size).')
parser.add_argument('--print_freq', type=int, default=10, metavar='N',
help='print a log message every N training steps.')
parser.add_argument('--eval_freq', type=int, default=1, metavar='N',
help='evaluate on the validation set every N epochs.')
args = parser.parse_args()
dist.init_process_group('nccl')
gpu_id = dist.get_rank() % torch.cuda.device_count()
torch.cuda.set_device(gpu_id)
setup_for_distributed(dist.get_rank() == 0)
print("{}".format(args).replace(', ', ',\n'))
print('creating model')
model = models_adapter.__dict__[args.model](num_classes=DATASETS[args.dataset]['NUM_CLASSES']).cuda().train()
n_trainable_params = 0
for n, p in model.named_parameters():
if p.requires_grad:
print('Trainable param: %s, %s, %s' % (n, p.size(), p.dtype))
n_trainable_params += p.numel()
print('Total trainable params:', n_trainable_params, '(%.2f M)' % (n_trainable_params / 1000000))
model = torch.nn.parallel.DistributedDataParallel(model)
model_without_ddp = model.module
print('creating dataset')
if not args.eval_only:
dataset_train = VideoDataset(
list_path=DATASETS[args.dataset]['TRAIN_LIST'],
data_root=DATASETS[args.dataset]['TRAIN_ROOT'],
random_sample=True,
mirror=args.mirror,
spatial_size=args.spatial_size,
auto_augment=args.auto_augment,
num_frames=args.num_frames,
sampling_rate=args.sampling_rate,
resize_type=args.resize_type,
scale_range=args.scale_range,
)
print('train dataset:', dataset_train)
dataset_val = VideoDataset(
list_path=DATASETS[args.dataset]['VAL_LIST'],
data_root=DATASETS[args.dataset]['VAL_ROOT'],
random_sample=False,
spatial_size=args.spatial_size,
num_frames=args.num_frames,
sampling_rate=args.sampling_rate,
num_spatial_views=args.num_spatial_views,
num_temporal_views=args.num_temporal_views,
)
print('val dataset:', dataset_val)
if not args.eval_only:
dataloader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=args.batch_size,
sampler=torch.utils.data.DistributedSampler(dataset_train),
num_workers=args.num_workers,
pin_memory=True,
)
dataloader_val = torch.utils.data.DataLoader(
torch.utils.data.Subset(dataset_val, range(dist.get_rank(), len(dataset_val), dist.get_world_size())),
batch_size=1,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
if args.eval_only:
optimizer = None
loss_scaler = None
lr_sched = None
else:
if args.lr is not None:
print('using absolute lr:', args.lr)
else:
print('using relative lr (per 256 samples):', args.blr)
args.lr = args.blr * args.batch_size * dist.get_world_size() / 256
print('effective lr:', args.lr)
params_with_decay, params_without_decay = [], []
for n, p in model.named_parameters():
if not p.requires_grad:
continue
if '.bias' in n:
params_without_decay.append(p)
else:
params_with_decay.append(p)
optimizer = torch.optim.AdamW(
[
{'params': params_with_decay, 'lr': args.lr, 'weight_decay': args.weight_decay},
{'params': params_without_decay, 'lr': args.lr, 'weight_decay': 0.}
],
)
print(optimizer)
loss_scaler = torch.cuda.amp.GradScaler()
def lr_func(step):
epoch = step / len(dataloader_train)
if epoch < args.warmup_epochs:
return epoch / args.warmup_epochs
else:
return 0.5 + 0.5 * math.cos((epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs) * math.pi)
lr_sched = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_func)
def evaluate(log_stats=None):
metric_logger = MetricLogger(delimiter=" ")
header = 'Test:'
model.eval()
for data, labels in metric_logger.log_every(dataloader_val, 100, header):
data, labels = data.cuda(), labels.cuda()
B, V = data.size(0), data.size(1)
data = data.flatten(0, 1)
with torch.cuda.amp.autocast():
with model.no_sync():
with torch.no_grad():
logits = model(data)
scores = logits.softmax(dim=-1)
scores = scores.view(B, V, -1).mean(dim=1)
acc1 = (scores.topk(1, dim=1)[1] == labels.view(-1, 1)).sum(dim=-1).float().mean().item() * 100
acc5 = (scores.topk(5, dim=1)[1] == labels.view(-1, 1)).sum(dim=-1).float().mean().item() * 100
metric_logger.meters['acc1'].update(acc1, n=scores.size(0))
metric_logger.meters['acc5'].update(acc5, n=scores.size(0))
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5))
if log_stats is not None:
log_stats.update({'val_' + k: meter.global_avg for k, meter in metric_logger.meters.items()})
start_epoch = load_model(args, model_without_ddp, optimizer, lr_sched, loss_scaler)
if args.eval_only:
evaluate()
return
for epoch in range(start_epoch, args.epochs):
dataloader_train.sampler.set_epoch(epoch)
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
model.train()
for step, (data, labels) in enumerate(metric_logger.log_every(dataloader_train, args.print_freq, header)):
data, labels = data.cuda(), labels.cuda()
optimizer.zero_grad()
with torch.cuda.amp.autocast():
logits = model(data)
acc1 = (logits.topk(1, dim=1)[1] == labels.view(-1, 1)).sum(dim=-1).float().mean().item() * 100
acc5 = (logits.topk(5, dim=1)[1] == labels.view(-1, 1)).sum(dim=-1).float().mean().item() * 100
loss = F.cross_entropy(logits, labels)
loss_scaler.scale(loss).backward()
loss_scaler.step(optimizer)
lr_sched.step()
loss_scaler.update()
metric_logger.update(
loss=loss.item(),
lr=optimizer.param_groups[0]['lr'],
acc1=acc1, acc5=acc5,
)
print('Averaged stats:', metric_logger)
log_stats = {'train_' + k: meter.global_avg for k, meter in metric_logger.meters.items()}
save_model(args, epoch, model_without_ddp, optimizer, lr_sched, loss_scaler)
if (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.epochs:
evaluate(log_stats)
if args.save_dir is not None and dist.get_rank() == 0:
n_total_params, n_trainable_params = 0, 0
for n, p in model_without_ddp.named_parameters():
n_total_params += p.numel()
if p.requires_grad:
n_trainable_params += p.numel()
log_stats['epoch'] = epoch
log_stats['n_trainable_params'] = n_trainable_params
log_stats['n_total_params'] = n_total_params
with open(os.path.join(args.save_dir, 'log.txt'), 'a') as f:
f.write(json.dumps(log_stats) + '\n')
if __name__ == '__main__': main()