forked from facebookresearch/ConvNeXt-V2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_pretrain.py
70 lines (53 loc) · 2.71 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import sys
from typing import Iterable
import torch
import utils
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
log_writer=None,
args=None):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
update_freq = args.update_freq
optimizer.zero_grad()
for data_iter_step, (samples, labels) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % update_freq == 0:
utils.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
if not isinstance(samples, list):
samples = samples.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
loss, _, _ = model(samples, labels, mask_ratio=args.mask_ratio)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= update_freq
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
torch.cuda.empty_cache() # clear the GPU cache at a regular interval for training ME network
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = utils.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % update_freq == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.update(train_loss=loss_value_reduce, head="loss", step=epoch_1000x)
log_writer.update(lr=lr, head="opt", step=epoch_1000x)
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}