forked from microsoft/PQCrypto-SIDH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfp_generic.c
executable file
·260 lines (214 loc) · 7.63 KB
/
fp_generic.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/********************************************************************************************
* SIDH: an efficient supersingular isogeny cryptography library
* Copyright (c) Microsoft Corporation
*
* Website: https://github.com/microsoft/PQCrypto-SIDH
* Released under MIT license
*
* Abstract: portable modular arithmetic for P503
*********************************************************************************************/
#include "../P503_internal.h"
#include "../../internal.h"
// Global constants
extern const uint64_t p503[NWORDS64_FIELD];
extern const uint64_t p503p1[NWORDS64_FIELD];
extern const uint64_t p503x2[NWORDS64_FIELD];
extern const uint64_t p503x4[NWORDS64_FIELD];
inline void mp_sub503_p2(const digit_t* a, const digit_t* b, digit_t* c)
{ // Multiprecision subtraction with correction with 2*p, c = a-b+2p.
unsigned int i, borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
SUBC(borrow, a[i], b[i], borrow, c[i]);
}
borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(borrow, c[i], ((digit_t*)p503x2)[i], borrow, c[i]);
}
}
inline void mp_sub503_p4(const digit_t* a, const digit_t* b, digit_t* c)
{ // Multiprecision subtraction with correction with 4*p, c = a-b+4p.
unsigned int i, borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
SUBC(borrow, a[i], b[i], borrow, c[i]);
}
borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(borrow, c[i], ((digit_t*)p503x4)[i], borrow, c[i]);
}
}
inline void fpadd503(const digit_t* a, const digit_t* b, digit_t* c)
{ // Modular addition, c = a+b mod p503.
// Inputs: a, b in [0, 2*p503-1]
// Output: c in [0, 2*p503-1]
unsigned int i, carry = 0;
digit_t mask;
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(carry, a[i], b[i], carry, c[i]);
}
carry = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
SUBC(carry, c[i], ((digit_t*)p503x2)[i], carry, c[i]);
}
mask = 0 - (digit_t)carry;
carry = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(carry, c[i], ((digit_t*)p503x2)[i] & mask, carry, c[i]);
}
}
inline void fpsub503(const digit_t* a, const digit_t* b, digit_t* c)
{ // Modular subtraction, c = a-b mod p503.
// Inputs: a, b in [0, 2*p503-1]
// Output: c in [0, 2*p503-1]
unsigned int i, borrow = 0;
digit_t mask;
for (i = 0; i < NWORDS_FIELD; i++) {
SUBC(borrow, a[i], b[i], borrow, c[i]);
}
mask = 0 - (digit_t)borrow;
borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(borrow, c[i], ((digit_t*)p503x2)[i] & mask, borrow, c[i]);
}
}
inline void fpneg503(digit_t* a)
{ // Modular negation, a = -a mod p503.
// Input/output: a in [0, 2*p503-1]
unsigned int i, borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
SUBC(borrow, ((digit_t*)p503x2)[i], a[i], borrow, a[i]);
}
}
void fpdiv2_503(const digit_t* a, digit_t* c)
{ // Modular division by two, c = a/2 mod p503.
// Input : a in [0, 2*p503-1]
// Output: c in [0, 2*p503-1]
unsigned int i, carry = 0;
digit_t mask;
mask = 0 - (digit_t)(a[0] & 1); // If a is odd compute a+p503
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(carry, a[i], ((digit_t*)p503)[i] & mask, carry, c[i]);
}
mp_shiftr1(c, NWORDS_FIELD);
}
void fpcorrection503(digit_t* a)
{ // Modular correction to reduce field element a in [0, 2*p503-1] to [0, p503-1].
unsigned int i, borrow = 0;
digit_t mask;
for (i = 0; i < NWORDS_FIELD; i++) {
SUBC(borrow, a[i], ((digit_t*)p503)[i], borrow, a[i]);
}
mask = 0 - (digit_t)borrow;
borrow = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
ADDC(borrow, a[i], ((digit_t*)p503)[i] & mask, borrow, a[i]);
}
}
void digit_x_digit(const digit_t a, const digit_t b, digit_t* c)
{ // Digit multiplication, digit * digit -> 2-digit result
register digit_t al, ah, bl, bh, temp;
digit_t albl, albh, ahbl, ahbh, res1, res2, res3, carry;
digit_t mask_low = (digit_t)(-1) >> (sizeof(digit_t)*4), mask_high = (digit_t)(-1) << (sizeof(digit_t)*4);
al = a & mask_low; // Low part
ah = a >> (sizeof(digit_t) * 4); // High part
bl = b & mask_low;
bh = b >> (sizeof(digit_t) * 4);
albl = al*bl;
albh = al*bh;
ahbl = ah*bl;
ahbh = ah*bh;
c[0] = albl & mask_low; // C00
res1 = albl >> (sizeof(digit_t) * 4);
res2 = ahbl & mask_low;
res3 = albh & mask_low;
temp = res1 + res2 + res3;
carry = temp >> (sizeof(digit_t) * 4);
c[0] ^= temp << (sizeof(digit_t) * 4); // C01
res1 = ahbl >> (sizeof(digit_t) * 4);
res2 = albh >> (sizeof(digit_t) * 4);
res3 = ahbh & mask_low;
temp = res1 + res2 + res3 + carry;
c[1] = temp & mask_low; // C10
carry = temp & mask_high;
c[1] ^= (ahbh & mask_high) + carry; // C11
}
void mp_mul(const digit_t* a, const digit_t* b, digit_t* c, const unsigned int nwords)
{ // Multiprecision comba multiply, c = a*b, where lng(a) = lng(b) = nwords.
unsigned int i, j;
digit_t t = 0, u = 0, v = 0, UV[2];
unsigned int carry = 0;
for (i = 0; i < nwords; i++) {
for (j = 0; j <= i; j++) {
MUL(a[j], b[i-j], UV+1, UV[0]);
ADDC(0, UV[0], v, carry, v);
ADDC(carry, UV[1], u, carry, u);
t += carry;
}
c[i] = v;
v = u;
u = t;
t = 0;
}
for (i = nwords; i < 2*nwords-1; i++) {
for (j = i-nwords+1; j < nwords; j++) {
MUL(a[j], b[i-j], UV+1, UV[0]);
ADDC(0, UV[0], v, carry, v);
ADDC(carry, UV[1], u, carry, u);
t += carry;
}
c[i] = v;
v = u;
u = t;
t = 0;
}
c[2*nwords-1] = v;
}
void rdc_mont(digit_t* ma, digit_t* mc)
{ // Efficient Montgomery reduction using comba and exploiting the special form of the prime p503.
// mc = ma*R^-1 mod p503x2, where R = 2^512.
// If ma < 2^512*p503, the output mc is in the range [0, 2*p503-1].
// ma is assumed to be in Montgomery representation.
unsigned int i, j, carry, count = p503_ZERO_WORDS;
digit_t UV[2], t = 0, u = 0, v = 0;
for (i = 0; i < NWORDS_FIELD; i++) {
mc[i] = 0;
}
for (i = 0; i < NWORDS_FIELD; i++) {
for (j = 0; j < i; j++) {
if (j < (i-p503_ZERO_WORDS+1)) {
MUL(mc[j], ((digit_t*)p503p1)[i-j], UV+1, UV[0]);
ADDC(0, UV[0], v, carry, v);
ADDC(carry, UV[1], u, carry, u);
t += carry;
}
}
ADDC(0, v, ma[i], carry, v);
ADDC(carry, u, 0, carry, u);
t += carry;
mc[i] = v;
v = u;
u = t;
t = 0;
}
for (i = NWORDS_FIELD; i < 2*NWORDS_FIELD-1; i++) {
if (count > 0) {
count -= 1;
}
for (j = i-NWORDS_FIELD+1; j < NWORDS_FIELD; j++) {
if (j < (NWORDS_FIELD-count)) {
MUL(mc[j], ((digit_t*)p503p1)[i-j], UV+1, UV[0]);
ADDC(0, UV[0], v, carry, v);
ADDC(carry, UV[1], u, carry, u);
t += carry;
}
}
ADDC(0, v, ma[i], carry, v);
ADDC(carry, u, 0, carry, u);
t += carry;
mc[i-NWORDS_FIELD] = v;
v = u;
u = t;
t = 0;
}
ADDC(0, v, ma[2*NWORDS_FIELD-1], carry, v);
mc[NWORDS_FIELD-1] = v;
}