-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMixMatch_OOD_main.py
684 lines (596 loc) · 28.9 KB
/
MixMatch_OOD_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
from fastai.vision import *
from fastai.callbacks import CSVLogger
from numbers import Integral
import torch
import logging
import sys
from torchvision.utils import save_image
import numpy as np
#from utilities.InBreastDataset import InBreastDataset
from utilities.run_context import RunContext
import utilities.cli as cli
import torchvision
#from utilities.albumentations_manager import get_albumentations
import mlflow
import os
import shutil
import time
import datetime
import matplotlib.pyplot as plt
import imageio
from skimage import transform
class MultiTransformLabelList(LabelList):
def __getitem__(self, idxs: Union[int, np.ndarray]) -> 'LabelList':
"""
Create K transformed images for the unlabeled data
:param idxs:
:return:
"""
"return a single (x, y) if `idxs` is an integer or a new `LabelList` object if `idxs` is a range."
global args
#print("MULTITRANSFORM LIST")
idxs = try_int(idxs)
if isinstance(idxs, Integral):
if self.item is None:
#CALLED EVEN FOR UNLABELED DATA, Y IS USED!
x, y = self.x[idxs], self.y[idxs]
else:
x, y = self.item, 0
if self.tfms or self.tfmargs:
#THIS IS DONE FOR UNLABELED DATA
x = [x.apply_tfms(self.tfms, **self.tfmargs) for _ in range(args.K_transforms)]
if hasattr(self, 'tfms_y') and self.tfm_y and self.item is None:
#IS NOT CALLED FOR UNLABELED DATA
y = y.apply_tfms(self.tfms_y, **{**self.tfmargs_y, 'do_resolve': False})
if y is None: y = 0
return x, y
else:
return self.new(self.x[idxs], self.y[idxs])
def MixmatchCollate(batch):
"""
# I'll also need to change the default collate function to accomodate multiple augments
:param batch:
:return:
"""
batch = to_data(batch)
if isinstance(batch[0][0], list):
batch = [[torch.stack(s[0]), s[1]] for s in batch]
return torch.utils.data.dataloader.default_collate(batch)
class MixupLoss(nn.Module):
"""
Implements the mixup loss
"""
def forward(self, preds, target, unsort=None, ramp=None, bs=None):
"""
Ramp, unsort and bs is None when doing validation
:param preds:
:param target:
:param unsort:
:param ramp:
:param bs:
:return:
"""
global args
if(args.balanced==5):
return self.forward_balanced_cross_entropy(preds, target, unsort, ramp, bs)
else:
return self.forward_original(preds, target, unsort, ramp, bs)
def forward_cross_entropy(self, preds, target, unsort=None, ramp=None, bs=None):
global args
if unsort is None:
return F.cross_entropy(preds, target)
calculate_cross_entropy = nn.CrossEntropyLoss()
preds = preds[unsort]
preds_l = preds[:bs]
preds_ul = preds[bs:]
# calculate log of softmax, to ensure correct usage of cross entropy
# one column per class, one batch per row
preds_ul = torch.softmax(preds_ul, dim=1)
# TARGETS CANNOT BE 1-K ONE HOT VECTOR
(highest_values, highest_classes) = torch.max(target[:bs], 1)
highest_classes = highest_classes.long()
loss_x = calculate_cross_entropy(preds_l, highest_classes)
# loss_x = -(preds_l * target[:bs]).sum(dim=1).mean()
loss_u = F.mse_loss(preds_ul, target[bs:])
self.loss_x = loss_x.item()
self.loss_u = loss_u.item()
return loss_x + args.lambda_unsupervised * ramp * loss_u
def forward_original(self, preds, target, unsort=None, ramp=None, num_labeled=None):
global args
"""
Implements the forward pass of the loss function
:param preds: predictions of the model
:param target: ground truth targets
:param unsort: ?
:param ramp: ramp weight
:param num_labeled:
:return:
"""
if unsort is None:
#used for evaluation
return F.cross_entropy(preds,target)
preds = preds[unsort]
#labeled and unlabeled observations were packed in the same array
preds_l = preds[:num_labeled]
preds_ul = preds[num_labeled:]
#apply logarithm to softmax of output, to ensure the correct usage of cross entropy
preds_l = torch.log_softmax(preds_l,dim=1)
preds_ul = torch.softmax(preds_ul,dim=1)
loss_x = -(preds_l * target[:num_labeled]).sum(dim=1).mean()
loss_u = F.mse_loss(preds_ul, target[num_labeled:])
self.loss_x = loss_x.item()
self.loss_u = loss_u.item()
return loss_x + args.lambda_unsupervised * ramp * loss_u
def forward_balanced(self, preds, target, unsort=None, ramp=None, bs=None):
"""
Balanced forward implementation
:param preds:
:param target:
:param unsort:
:param ramp:
:param bs:
:return:
"""
global args
if unsort is None:
return F.cross_entropy(preds, target)
# target contains mixed up targets!! not just 0s and 1s
preds = preds[unsort]
preds_l = preds[:bs]
preds_ul = preds[bs:]
# calculate log of softmax, to ensure correct usage of cross entropy
# one column per class, one batch per row
preds_l = torch.log_softmax(preds_l, dim=1)
# get the weights for the labeled observations
weights_labeled = self.get_weights_observations(target[:bs])
preds_ul = torch.softmax(preds_ul, dim=1)
# get the weights for the unlabeled observations
weights_unlabeled = self.get_weights_observations(target[bs:])
loss_x = -(weights_labeled * preds_l * target[:bs]).sum(dim=1).mean()
loss_u = F.mse_loss(weights_unlabeled * preds_ul, weights_unlabeled * target[bs:])
self.loss_x = loss_x.item()
self.loss_u = loss_u.item()
return loss_x + args.lambda_unsupervised * ramp * loss_u
def forward_balanced_cross_entropy(self, preds, target, unsort=None, ramp=None, bs=None):
global args, class_weights
if unsort is None:
return F.cross_entropy(preds, target)
weights_unlabeled = self.get_weights_observations(target[bs:]).float()
calculate_cross_entropy = nn.CrossEntropyLoss(weight = class_weights.float())
preds = preds[unsort]
preds_l = preds[:bs]
preds_ul = preds[bs:]
# calculate log of softmax, to ensure correct usage of cross entropy
# one column per class, one batch per row
preds_ul = torch.softmax(preds_ul, dim=1)
# TARGETS CANNOT BE 1-K ONE HOT VECTOR
(highest_values, highest_classes) = torch.max(target[:bs], 1)
highest_classes = highest_classes.long()
loss_x = calculate_cross_entropy(preds_l, highest_classes)
loss_u = F.mse_loss(weights_unlabeled * preds_ul, weights_unlabeled * target[bs:])
self.loss_x = loss_x.item()
self.loss_u = loss_u.item()
return loss_x + args.lambda_unsupervised * ramp * loss_u
def get_weights_observations(self, array_predictions):
global class_weights
# class_weights = torch.tensor([0.2, 0.2, 0.2, 0.2, 0.2])
# each column is a class, each row an observation
num_classes = array_predictions.shape[1]
num_observations = array_predictions.shape[0]
(highest_values, highest_classes) = torch.max(array_predictions, 1)
# turn the highest_classes array a column vector
highest_classes_col = highest_classes.view(-1, 1)
# highest classes for all the observations (rows) and classes (columns)
highest_classes_all = highest_classes_col.repeat(1, num_classes)
# print("highest classes all")
# print(highest_classes_all)
# scores all
scores_all = class_weights[highest_classes_all]
scores_all.to(device="cuda:0")
return scores_all
class MixMatchImageList(ImageList):
"""
Custom ImageList with filter function
"""
def filter_train(self, num_items, seed = 23488):
"""
Takes a number of observations as labeled, assumes that the evaluation observations are in the test folder
:param num_items:
:param seed: The seed is fixed for reproducibility
:return: return the filtering function by itself
"""
global args
path_unlabeled = args.path_unlabeled
if (args.path_unlabeled == ""):
path_unlabeled = args.path_labeled
#this means that a customized unlabeled dataset is not to be used, just pick the rest of the labelled data as unlabelled
if(path_unlabeled == args.path_labeled):
train_idxs = np.array([i for i, observation in enumerate(self.items) if Path(observation).parts[-3] != "test"])
else:
# IGNORE THE DATA ALREADY IN THE UNLABELED DATASET
dataset_unlabeled = torchvision.datasets.ImageFolder(path_unlabeled + "/train/")
list_file_names_unlabeled = dataset_unlabeled.imgs
for i in range(0, len(list_file_names_unlabeled)):
#delete root of path
list_file_names_unlabeled[i] = list_file_names_unlabeled[i][0].replace(path_unlabeled, "")
list_train = []
#add to train if is not in the unlabeled dataset
for i, observation in enumerate(self.items):
path_1 = str(Path(observation))
sub_str = args.path_labeled
path_2 = path_1.replace(sub_str, "")
path_2 = path_2.replace("train/", "")
is_path_in_unlabeled = path_2 in list_file_names_unlabeled
#add the observation to the train list, if is not in the unlabeled dataset
if( not "test" in path_2 and not is_path_in_unlabeled):
list_train += [i]
#store the train idxs c
train_idxs = np.array(list_train)
logger.info("Customized number of unlabeled observations " + str(len(list_file_names_unlabeled)))
valid_idxs = np.array([i for i, observation in enumerate(self.items) if Path(observation).parts[-3] == "test"])
# for reproducibility
np.random.seed(seed)
# keep the number of items desired, 500 by default
keep_idxs = np.random.choice(train_idxs, num_items, replace=False)
logger.info("Number of labeled observations: " + str(len(keep_idxs)))
logger.info("First labeled id: " + str(keep_idxs[0]))
logger.info("Number of validation observations: " + str(len(valid_idxs)))
logger.info("Number of training observations " + str(len(train_idxs)))
self.items = np.array([o for i, o in enumerate(self.items) if i in np.concatenate([keep_idxs, valid_idxs])])
return self
class PartialTrainer(LearnerCallback):
def on_epoch_end(self, epoch, last_metrics, smooth_loss, last_loss, **kwargs):
train_loss = float(smooth_loss)
val_loss = float(last_metrics[0])
val_accuracy = float(last_metrics[1])
mlflow.log_metric(key= 'train_loss', value=train_loss, step=epoch)#last_loss
mlflow.log_metric(key= 'val_loss', value=val_loss, step=epoch)#last_metric #1
mlflow.log_metric(key= 'val_accuracy', value=val_accuracy, step=epoch)
class MixMatchTrainer(LearnerCallback):
"""
Mix match trainer functions
"""
def on_train_begin(self, **kwargs):
"""
Callback used when the trainer is beginning, inits variables
:param kwargs:
:return:
"""
global data_labeled
self.l_dl = iter(data_labeled.train_dl)
#metrics recorder
self.smoothL, self.smoothUL = SmoothenValue(0.98), SmoothenValue(0.98)
#metrics to be displayed in the table
self.it = 0
def mixup(self, a_x, a_y, b_x, b_y):
"""
Mixup augments data by mixing labels and pseudo labels and its observations
:param a_x:
:param a_y:
:param b_x:
:param b_y:
:param alpha:
:return:
"""
global args
alpha = args.alpha_mix
l = np.random.beta(alpha, alpha)
l = max(l, 1 - l)
x = l * a_x + (1 - l) * b_x
y = l * a_y + (1 - l) * b_y
return x, y
def sharpen(self, p):
global args
"""
Sharpens the distribution output, to encourage confidence
:param p:
:param T:
:return:
"""
T = args.T_sharpening
u = p ** (1 / T)
return u / u.sum(dim=1, keepdim=True)
def on_batch_begin(self, train, last_input, last_target, **kwargs):
"""
Called on batch training at the begining
:param train:
:param last_input:
:param last_target:
:param kwargs:
:return:
"""
global data_labeled, args
if not train: return
try:
x_l, y_l = next(self.l_dl)
except:
self.l_dl = iter(data_labeled.train_dl)
x_l, y_l = next(self.l_dl)
x_ul = last_input
with torch.no_grad():
#calculates the pseudo sharpened labels
ul_labels = self.sharpen(
torch.softmax(torch.stack([self.learn.model(x_ul[:, i]) for i in range(x_ul.shape[1])], dim=1),
dim=2).mean(dim=1))
#create torch array of unlabeled data
x_ul = torch.cat([x for x in x_ul])
#WE CAN CALCULATE HERE THE CONFIDENCE COEFFICIENT
ul_labels = torch.cat([y.unsqueeze(0).expand(args.K_transforms, -1) for y in ul_labels])
l_labels = torch.eye(data_labeled.c).cuda()[y_l]
w_x = torch.cat([x_l, x_ul])
w_y = torch.cat([l_labels, ul_labels])
idxs = torch.randperm(w_x.shape[0])
#create mixed input and targets
mixed_input, mixed_target = self.mixup(w_x, w_y, w_x[idxs], w_y[idxs])
bn_idxs = torch.randperm(mixed_input.shape[0])
unsort = [0] * len(bn_idxs)
for i, j in enumerate(bn_idxs): unsort[j] = i
mixed_input = mixed_input[bn_idxs]
ramp = self.it / args.rampup_coefficient if self.it < args.rampup_coefficient else 1.0
return {"last_input": mixed_input, "last_target": (mixed_target, unsort, ramp, x_l.shape[0])}
def on_batch_end(self, train, **kwargs):
"""
Add the metrics at the end of the batch training
:param train:
:param kwargs:
:return:
"""
if not train: return
self.smoothL.add_value(self.learn.loss_func.loss_x)
self.smoothUL.add_value(self.learn.loss_func.loss_u)
self.it += 1
"""def on_epoch_end(self, last_metrics, **kwargs):
Avoid adding weird stuff on metrics table
When the epoch ends, add the accmulated metric values
:param last_metrics:
:param kwargs:
:return:
return add_metrics(last_metrics, [self.smoothL.smooth, self.smoothUL.smooth])
"""
def on_epoch_end(self, epoch, last_metrics, smooth_loss, last_loss, **kwargs):
train_loss = float(smooth_loss)
val_loss = float(last_metrics[0])
val_accuracy = float(last_metrics[1])
mlflow.log_metric(key= 'train_loss', value=train_loss, step=epoch)#last_loss
mlflow.log_metric(key= 'val_loss', value=val_loss, step=epoch)#last_metric #1
mlflow.log_metric(key= 'val_accuracy', value=val_accuracy, step=epoch)
def get_dataset_stats(args):
#note: these are just used as a placeholder, the actual standardization stats are calculated on per batch basis when the data is read
if(args.norm_stats.strip() == "MNIST"):
# stats for MNIST
meanDatasetComplete = [0.1307, 0.1307, 0.1307]
stdDatasetComplete = [0.3081, 0.3081, 0.3081]
return (meanDatasetComplete, stdDatasetComplete)
def calculate_weights(list_labels):
"""
Calculate the class weights according to the number of observations
:param list_labels:
:return:
"""
global logger, args
array_labels = np.array(list_labels)
logger.info("Using balanced loss: " + str(args.balanced))
list_classes = np.unique(array_labels)
weight_classes = np.zeros(len(list_classes))
for curr_class in list_classes:
number_observations_class = len(array_labels[array_labels == curr_class])
logger.info("Number observations " + str(number_observations_class) + " for class " + str(curr_class))
weight_classes[curr_class] = 1 / number_observations_class
weight_classes = weight_classes / weight_classes.sum()
logger.info("Weights to use: " + str(weight_classes))
weight_classes_tensor = torch.tensor(weight_classes, device ="cuda:0" )
return weight_classes_tensor
def get_datasets():
"""
Get datasets (FAST AI data bunches ) for labeled, unlabeled and validation
:return: data_labeled (limited labeled data), data_unlabeled , data_full (complete labeled dataset)
"""
global args, data_labeled, logger, class_weights
path_labeled = args.path_labeled
path_unlabeled = args.path_unlabeled
if (args.path_unlabeled == ""):
path_unlabeled = path_labeled
#get dataset mean and std
norm_stats = get_dataset_stats(args)
logger.info("Loading labeled data from: " + path_labeled)
logger.info("Loading unlabeled data from: " + path_unlabeled)
# Create two databunch objects for the labeled and unlabled images. A fastai databunch is a container for train, validation, and
# test dataloaders which automatically processes transforms and puts the data on the gpu.
# https://docs.fast.ai/vision.transform.html
#COMPUTE BATCH NORMALIZATION STATS FOR LABELED DATA
data_labeled = (MixMatchImageList.from_folder(path_labeled)
.filter_train(args.number_labeled) # Use 500 labeled images for traning
.split_by_folder(valid="test") # test on all 10000 images in test set
.label_from_folder()
.transform(get_transforms(do_flip = True, flip_vert = True, max_zoom=1, max_warp=None, p_affine=0, p_lighting = 0),
size=args.size_image)
# On windows, must set num_workers=0. Otherwise, remove the argument for a potential performance improvement
.databunch(bs=args.batch_size, num_workers=args.workers)
.normalize(norm_stats))
train_set = set(data_labeled.train_ds.x.items)
#logging the labeled inputs to artifacts/inputs/labelled
labeled_array_list = []
for labeled in train_set:
mlflow.log_artifact(labeled, artifact_path='inputs/labelled')
image = imageio.imread(labeled)
labeled_array_list.append(image)
labeled_shape = image.shape
labeled_array = np.array(labeled_array_list)/255.
if len(labeled_array.shape) < 4: #for grayscale data we copy the last chanel three times
norm_stats_labeled = (list(np.mean(labeled_array[:,:,:,np.newaxis], axis=(0,1,2)))*3, list(np.std(labeled_array[:,:,:,np.newaxis], axis=(0,1,2)))*3)
else:
norm_stats_labeled = (list(np.mean(labeled_array, axis=(0,1,2))), list(np.std(labeled_array, axis=(0,1,2))))
#CREATE DATA BUNCH WITH BATCH STATS FOR LABELED DATA
data_labeled = (MixMatchImageList.from_folder(path_labeled)
.filter_train(args.number_labeled) # Use 500 labeled images for traning
.split_by_folder(valid="test") # test on all 10000 images in test set
.label_from_folder()
.transform(get_transforms(do_flip = True, flip_vert = True, max_zoom=1, max_warp=None, p_affine=0, p_lighting = 0),
size=args.size_image)
# On windows, must set num_workers=0. Otherwise, remove the argument for a potential performance improvement
.databunch(bs=args.batch_size, num_workers=args.workers)
.normalize(norm_stats_labeled))
# normalize_funcs(mean:FloatTensor, std:FloatTensor, do_x:bool=True, do_y:bool=False)
train_set = set(data_labeled.train_ds.x.items)
#get the list of labels for the dataset
list_labels = data_labeled.train_ds.y.items
#calculate the class weights
class_weights = calculate_weights(list_labels)
# load the unlabeled data
#filter picks the labeled images not contained in the unlabeled dataset, in the case of SSDL
#the test set is in the unlabeled folder
src = (ImageList.from_folder(path_unlabeled)
.filter_by_func(lambda x: x not in train_set)
.split_by_folder(valid="test")
)
unlabeled_array_list = []
#logging iod and ood unlabelled data
for class_id in os.listdir(path_unlabeled+'/train'):
for unlabelled in os.listdir(path_unlabeled+'/train'+'/'+class_id):
if 'ood' in unlabelled:
mlflow.log_artifact(path_unlabeled+'/train'+'/'+class_id+'/'+unlabelled, artifact_path='inputs/unlabelled/ood/'+class_id)
image = imageio.imread(path_unlabeled+'/train'+'/'+class_id+'/'+unlabelled)
image = transform.resize(image, (args.size_image, args.size_image, 3),preserve_range=True)
else:
#mlflow.log_artifact(path_unlabeled+'/train'+'/'+class_id+'/'+unlabelled, artifact_path='inputs/unlabelled/iod/'+class_id)
mlflow.log_artifact(path_unlabeled+'/train'+'/'+class_id+'/'+unlabelled, artifact_path='inputs/unlabelled/iod/'+class_id)
image = imageio.imread(path_unlabeled+'/train'+'/'+class_id+'/'+unlabelled)
image = transform.resize(image, (args.size_image, args.size_image, 3), preserve_range=True)
unlabeled_array_list.append(image)
unlabeled_array = np.array(unlabeled_array_list)/255.
print('##################################')
print(unlabeled_array.shape)
print('##################################')
if len(unlabeled_array.shape) < 4: #for grayscale data we copy the last chanel three times
norm_stats_unlabeled = (list(np.mean(unlabeled_array[:,:,:,np.newaxis], axis=(0,1,2)))*3, list(np.std(unlabeled_array[:,:,:,np.newaxis], axis=(0,1,2)))*3)
else:
norm_stats_unlabeled = (list(np.mean(unlabeled_array, axis=(0,1,2))), list(np.std(unlabeled_array, axis=(0,1,2))))
mlflow.log_param(key="norm_stats_labeled", value=str(norm_stats_labeled))
mlflow.log_param(key="norm_stats_unlabeled", value=str(norm_stats_unlabeled))
#AUGMENT THE DATA
src.train._label_list = MultiTransformLabelList
# https://docs.fast.ai/vision.transform.html
# data not in the train_set and splitted by test folder is used as unlabeled
data_unlabeled = (src.label_from_folder()
.transform(get_transforms(do_flip = True, flip_vert = True, max_zoom=1, max_warp=None, p_affine=0, p_lighting = 0), size=args.size_image)
.databunch(bs=args.batch_size, collate_fn=MixmatchCollate, num_workers=10)
.normalize(norm_stats_unlabeled))
# Databunch with all 50k images labeled, for baseline
data_full = (ImageList.from_folder(path_labeled)
.split_by_folder(valid="test")
.label_from_folder()
.transform(get_transforms(do_flip = True, flip_vert = True, max_zoom=1, max_warp=None, p_affine=0, p_lighting = 0),
size=args.size_image)
.databunch(bs=args.batch_size, num_workers=args.workers)
.normalize(norm_stats))
return (data_labeled, data_unlabeled, data_full)
def train_mix_match():
"""
Train the mix match model
:param path_labeled:
:param path_unlabeled:
:param number_epochs:
:param learning_rate:
:param mode:
:return:
"""
global data_labeled, is_colab, logger, args
learning_rate = args.lr
number_epochs = args.epochs
logger = logging.getLogger('main')
(data_labeled, data_unlabeled, data_full)= get_datasets()
#start_nf the initial number of features
"""
Wide ResNet with num_groups and a width of k.
Each group contains N blocks. start_nf the initial number of features. Dropout of drop_p is applied in between the two convolutions in each block. The expected input channel size is fixed at 3.
Structure: initial convolution -> num_groups x N blocks -> final layers of regularization and pooli
"""
if(args.model == "wide_resnet"):
model = models.WideResNet(num_groups=3,N=4,num_classes=args.num_classes,k = 2,start_nf=args.size_image)
elif(args.model == "densenet"):
model = models.densenet121(num_classes=args.num_classes)
elif(args.model == "squeezenet"):
model = models.squeezenet1_1(num_classes=args.num_classes)
elif(args.model.strip() == "alexnet"):
logger.info("Using alexnet")
model = models.alexnet(num_classes=args.num_classes)
if (args.mode.strip() == "fully_supervised"):
logger.info("Training fully supervised model")
# Edit: We can find the answer ‘Note that metrics are always calculated on the validation set.’ on this page: https://docs.fast.ai/training.html 42.
if (is_colab):
learn = Learner(data_full, model, metrics=[accuracy])
else: #, callback_fns = [CSVLogger]
learn = Learner(data_full, model, metrics=[accuracy], callback_fns = [CSVLogger])
if (args.mode.strip() == "partial_supervised"):
logger.info("Training supervised model with a limited set of labeled data")
if(is_colab):
#uses loss_func=FlattenedLoss of CrossEntropyLoss()
learn = Learner(data_labeled, model, metrics=[accuracy])
else:
if(args.balanced == 5):
logger.info("Using balanced cross entropy")
calculate_cross_entropy = nn.CrossEntropyLoss(weight=class_weights.float())
learn = Learner(data_labeled, model, metrics=[accuracy], callback_fns = [PartialTrainer, CSVLogger], loss_func = calculate_cross_entropy)
else:
learn = Learner(data_labeled, model, metrics=[accuracy], callback_fns=[PartialTrainer, CSVLogger])
#learn.fit_one_cycle(number_epochs, learning_rate, wd=args.weight_decay)
"""
fit[source][test]
fit(epochs:int, lr:Union[float, Collection[float], slice]=slice(None, 0.003, None), wd:Floats=None, callbacks:Collection[Callback]=None)
Fit the model on this learner with lr learning rate, wd weight decay for epochs with callbacks.
"""
if (args.mode.strip() == "ssdl"):
logger.info("Training semi supervised model with limited set of labeled data")
# https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin
if(is_colab):
learn = Learner(data_unlabeled, model, loss_func=MixupLoss(), callback_fns=[MixMatchTrainer], metrics=[accuracy])
else:
learn = Learner(data_unlabeled, model, loss_func=MixupLoss(), callback_fns=[MixMatchTrainer, CSVLogger],
metrics=[accuracy])
#train the model
learn.fit_one_cycle(number_epochs, learning_rate, wd=args.weight_decay)
#if it is not colab, write the csv to harddrive
if(not is_colab):
logged_frame = learn.csv_logger.read_logged_file()
def main_colab():
global args, logger, is_colab
is_colab = True
dateInfo = "{date:%Y-%m-%d_%H_%M_%S}".format(date=datetime.now())
logging.basicConfig(filename="log_" + dateInfo + ".txt", level=logging.INFO, format='%(message)s')
logger = logging.getLogger('main')
#Get the default arguments
args = create_parser().parse_args(args=[])
#args.balanced = False
handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info("Arguments: " + str(args))
train_mix_match()
if __name__ == '__main__':
global args, counter, context, logger, is_colab
is_colab = False
args = cli.parse_commandline_args()
print("Balanced loss: ")
#args.balanced = False
print(args.balanced)
print("Rampup coefficient: ", args.rampup_coefficient)
logger = logging.getLogger('main')
logger.info("Learning rate " + str(args.lr))
#mlflow logging
_, batch_info = args.path_unlabeled.rsplit('/',1)
batch, batch_num, batch_stats = batch_info.split('_', 2)
num_labeled = str(args.number_labeled)
_, _, num_unlabeled, _, _, ood_perc_pp = batch_stats.split('_')
experiment_name = args.dataset+'-'+num_labeled+'-'+ood_perc_pp
run_name = batch+'_'+batch_num
mlflow.set_experiment(experiment_name=experiment_name) #create the experiment
if args.exp_creator == "Yes":
quit()
mlflow.start_run(run_name=run_name) #start the mlflow run for logging
mlflow.log_params(params=vars(args)) #log all parameters in one go using log_batch
mlflow.log_param(key='batch number', value=batch+' '+batch_num)
mlflow.log_param(key='batch stats', value = batch_stats)
train_mix_match()
mlflow.end_run()