-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconfig.py
49 lines (38 loc) · 2.7 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import argparse
import torch
def load_config():
# args
parser = argparse.ArgumentParser(description="CortexODE")
# for training
parser.add_argument('--data_dir', default="../dataset/hcp600/", type=str, help="directory of the dataset")
parser.add_argument('--model_dir', default="./ckpts/model/", type=str, help="directory for saving the models")
parser.add_argument('--data_name', default="hcp", type=str, help="name of the dataset")
parser.add_argument('--train_type', default="surf", type=str, help="type of training: [seg, surf]")
parser.add_argument('--surf_type', default="wm", type=str, help="type of the surface: [wm, gm]")
parser.add_argument('--surf_hemi', default="lh", type=str, help="left or right hemisphere: [lh, rh]")
parser.add_argument('--device', default="gpu", type=str, help="gpu or cpu")
parser.add_argument('--tag', default='0000', type=str, help="identity for experiments")
parser.add_argument('--solver', default='euler', type=str, help="ODE solver: [euler, midpoint, rk4]")
parser.add_argument('--step_size', default=0.2, type=float, help="step size of the ODE solver")
parser.add_argument('--lambd', default=1.0, type=float, help="Laplacian smooth weight")
parser.add_argument('--n_inflate', default=2, type=int, help="num of interations of Laplacian smoothing and inflating")
parser.add_argument('--rho', default=0.002, type=float, help="inflation scale of normals")
parser.add_argument('--n_epochs', default=100, type=int, help="num of training epochs")
parser.add_argument('--n_samples', default=150000, type=int, help="num of sampled points for training")
parser.add_argument('--lr', default=1e-4, type=float, help="learning rate")
parser.add_argument('--kernel_size', default=5, type=int, help="kernel size of conv layers")
parser.add_argument('--dim_h', default=128, type=int, help="dimension of hidden layers")
parser.add_argument('--n_scale', default=3, type=int, help="num of scales for multi-scale inputs")
# for testing
parser.add_argument('--test_type', default="pred", type=str, help="type of testing: [init, pred, eval]")
parser.add_argument('--init_dir', default="./ckpts/init/", type=str, help="directory for saving the initial surfaces")
parser.add_argument('--result_dir', default="./ckpts/result/", type=str, help="directory for saving the predicted surfaces")
config = parser.parse_args()
if config.device == "gpu":
config.device = torch.device("cuda")
elif config.device == "cpu":
config.device = torch.device("cpu")
else:
config.device = torch.device(config.device)
config.device = torch.device(config.device)
return config