This repository has been archived by the owner on Apr 7, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwrapper_yelp.py
154 lines (135 loc) · 5.71 KB
/
wrapper_yelp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import requests
import pandas as pd
from pandas.io.json import json_normalize
import json
import random
DEFAULT_LOCATION = 'Aveiro'
SEARCH_LIMIT = 50
OFFSETS = 20
CLIENT_ID = "UEpOw_GR3E0vb7-CxYCPlA"
API_KEY = "-py7MDWBERptrew8wySEC99T13FKIvHpjKOe9laLGX-fvyvQB4K93HJNvUQMf0wKeh4P4n61Ab2xxK1tT_sQVh3S7aF0yD2yaK52_Bs3OJSP2XU1qUVfHQQXhBjRWnYx"
URL = "https://api.yelp.com/v3/businesses/search"
BASE_URL = "https://api.yelp.com/v3/businesses/"
SORT_PARAM = "distance"
ratings = [1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0]
data_Porto = json.load(open("Porto.json"))
df_Porto = json_normalize(data_Porto["businesses"])
data_Lisboa = json.load(open("Lisbon.json"))
df_Lisboa = json_normalize(data_Lisboa["businesses"])
data_Aveiro = json.load(open("Aveiro.json"))
df_Aveiro = json_normalize(data_Aveiro["businesses"])
def createNewQuestion(location, difficulty=None):
if(location == 'lisboa'):
df = df_Lisboa
elif(location == 'aveiro'):
df = df_Aveiro
else:
df = df_Porto
try:
a = df.sample(n=1, axis=0)
rating_a = a['rating'].values[0]
if difficulty is not None:
rand = random.choice([0, 1])
if difficulty is 'e':
rating_b = random.sample(set([float(rating_a - 1.5), float(rating_a + 1.5)]), 2)[rand]
rating_b = 1.0 if rating_b < 1.0 else 5.0 if rating_b > 5.0 else rating_b
if rating_a == rating_b:
if rating_b == 5.0:
rating_b = rating_b - 1.5
elif rating_b == 1.0:
rating_b = rating_b + 1.5
elif difficulty is 'm':
rating_b = random.sample(set([float(rating_a - 1), float(rating_a + 1)]), 2)[rand]
rating_b = 1.0 if rating_b < 1.0 else 5.0 if rating_b > 5.0 else rating_b
if rating_a == rating_b:
if rating_b == 5.0:
rating_b = rating_b - 1.0
elif rating_b == 1.0:
rating_b = rating_b + 1.0
elif difficulty is 'h':
rating_b = random.sample(set([float(rating_a - 0.5), float(rating_a + 0.5)]), 2)[rand]
rating_b = 1.0 if rating_b < 1.0 else 5.0 if rating_b > 5.0 else rating_b
if rating_a == rating_b:
if rating_b == 5.0:
rating_b = rating_b - 0.5
elif rating_b == 1.0:
rating_b = rating_b + 0.5
question_ratings = [rating_a, rating_b]
question = {
"A": json.loads(a.drop(['rating'], axis=1).sample(n=1, axis=0).to_json(orient='records'))[0],
"B": json.loads(df.loc[df['rating'] == rating_b].drop(['rating'], axis=1).sample(n=1, axis=0).to_json(
orient='records'))[0],
}
if (question_ratings.index(min(question_ratings)) == 0):
answer = question['A']['name']
worst_review = getWorstReview(question['A']['id'])
else:
answer = question['B']['name']
worst_review = getWorstReview(question['B']['id'])
else:
question_ratings = random.sample(set(ratings), 2)
question = {
"A": json.loads(
df.loc[df['rating'] == question_ratings[0]].drop(['rating'], axis=1).sample(n=1, axis=0).to_json(
orient='records'))[0],
"B": json.loads(
df.loc[df['rating'] == question_ratings[1]].drop(['rating'], axis=1).sample(n=1, axis=0).to_json(
orient='records'))[0],
}
if (question_ratings.index(min(question_ratings)) == 0):
answer = question['A']['name']
worst_review = getWorstReview(question['A']['id'])
else:
answer = question['B']['name']
worst_review = getWorstReview(question['B']['id'])
except:
return createNewQuestion(location)
return question, answer, worst_review
def request(url, api_key, location, offset):
url_params = {
'location': location.replace(' ', '+'),
'limit': SEARCH_LIMIT,
'sort_by': SORT_PARAM,
'offset': offset,
}
headers = {
'Authorization': 'Bearer %s' % api_key,
}
response = requests.request('GET', url, headers=headers, params=url_params)
return response.json()
def getReviews(url, api_key, business_id):
headers = {
'Authorization': 'Bearer %s' % api_key,
}
response = requests.request('GET', url + business_id + "/reviews", headers=headers)
return response.json()
def getWorstReview(business_id):
reviews = getReviews(BASE_URL, API_KEY, business_id)
worst_review = None
worst_rating = 6
if len(reviews['reviews']) > 0:
for review in reviews['reviews']:
if int(review['rating']) < worst_rating:
worst_rating = int(review['rating'])
worst_review = review
return worst_review
def getJson():
out = {
'businesses': [],
}
response = request(URL, API_KEY, DEFAULT_LOCATION, 0)
#print(response)
out['businesses'].extend(response['businesses'])
offset = int(response['total'] / 50) + 1
if offset > 20:
offset = 20
for i in range(1, offset):
response = request(URL, API_KEY, DEFAULT_LOCATION, i * 50)
print(response)
out['businesses'].extend(response['businesses'])
locationDataFile = open('Aveiro.json', 'w')
locationDataFile.write(json.dumps(out, indent=4, sort_keys=True))
locationDataFile.close()
#createNewQuestion(DEFAULT_LOCATION, 'h')
# print(getReviews(BASE_URL, API_KEY, "yMUNfRmBfo_qvl-0p_kAwg"))
getJson()