-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPeakDetector.h
122 lines (112 loc) · 3.64 KB
/
PeakDetector.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// Signal peak detector using smoothed z-score algorithm.
// Detects when a continuous signal has a significant peak in values. Based on
// algorithm from the answer here:
// https://stackoverflow.com/questions/22583391/peak-signal-detection-in-realtime-timeseries-data/22640362#22640362
// Author: Tony DiCola
// License: MIT License (https://opensource.org/licenses/MIT)
// Usage:
// - Create an instance of the PeakDetector class and configure its lag, threshold,
// and influence. These likely need to be adjust to fit your dataset. See the
// Stack Overflow question above for more details on their meaning.
// - Continually call detect and feed it a new sample value. Detect will return 0
// if no peak was detected, 1 if a positive peak was detected and -1 if a negative
// peak was detected.
#ifndef PEAKDETECTOR_H
#define PEAKDETECTOR_H
class PeakDetector {
public:
PeakDetector(const int lag=5, const float threshold=3.5, const float influence=0.5):
_lag(lag), _threshold(threshold), _influence(influence), _avg(0.0), _std(0.0), _primed(false), _index(0)
{
// Allocate memory for last samples (used during averaging) and set them all to zero.
_filtered = new float[lag];
for (int i=0; i<lag; ++i) {
_filtered[i] = 0.0;
}
}
~PeakDetector() {
// Deallocate memory for samples.
if (_filtered != NULL) {
delete[] _filtered;
}
}
int detect(float sample) {
// Detect if the provided sample is a positive or negative peak.
// Will return 0 if no peak detected, 1 if a positive peak and -1
// if a negative peak.
int result = 0;
// Fill up filtered samples if not yet primed with enough available samples.
if (_primed && (abs(sample-_avg) > (_threshold*_std))) {
// Detected a peak!
// Determine type of peak, positive or negative.
if (sample > _avg) {
result = 1;
}
else {
result = -1;
}
// Save this sample but scaled down based on influence.
_filtered[_index] = (_influence*sample) + ((1.0-_influence)*_filtered[_previousIndex()]);
}
else {
// Did not detect a peak, or not yet primed with enough samples.
// Just record this sample and move on.
_filtered[_index] = sample;
}
// Increment index of next filtered sample.
_incrementIndex();
// When primed update the average and standard deviation of the most recent
// filtered values.
if (_primed) {
// Compute mean of filtered values.
_avg = 0.0;
for (int i=0; i<_lag; ++i) {
_avg += _filtered[i];
}
_avg = _avg/float(_lag);
// Compute standard deviation of filtered values.
_std = 0.0;
for (int i=0; i<_lag; ++i) {
_std += pow(_filtered[i]-_avg, 2.0);
}
_std = sqrt(_std/float(_lag));
}
return result;
}
float getAvg() {
// Return the current signal average, useful for debugging.
return _avg;
}
float getStd() {
// Return the current signal standard deviation, useful for debugging.
return _std;
}
private:
float _lag;
float _threshold;
float _influence;
float* _filtered;
float _avg;
float _std;
bool _primed;
int _index;
void _incrementIndex() {
// Increment the index of the current sample.
_index += 1;
if (_index >= _lag) {
// Loop back to start of sample buffer when full, but be sure to note
// when this happens to indicate we are primed with enough samples.
_index = 0;
_primed = true;
}
}
int _previousIndex() {
// Find the index of the last sample.
int result = _index-1;
if (result < 0) {
result = _lag-1;
}
return result;
}
};
#endif