From fa0ca707a60ac62ace640b3ed73941aef175a5dc Mon Sep 17 00:00:00 2001 From: mmb L <7960706+mammothb@users.noreply.github.com> Date: Sat, 31 Aug 2024 10:57:14 +0800 Subject: [PATCH] remove numpy dependency --- .gitattributes | 1 + requirements.txt | 1 - tests/test_editdistance.py | 379 ++++++++++++++++++------------------- 3 files changed, 190 insertions(+), 191 deletions(-) create mode 100644 .gitattributes diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..298603c --- /dev/null +++ b/.gitattributes @@ -0,0 +1 @@ +*.py eol=lf diff --git a/requirements.txt b/requirements.txt index c4b8ca9..5b8a7cd 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,6 +3,5 @@ editdistpy>=0.1.3 # For testing coverage==7.4.4 importlib-resources>=6.3.2 -numpy>=1.19.5 pytest==8.1.1 pytest-cov==4.1.0 diff --git a/tests/test_editdistance.py b/tests/test_editdistance.py index 65d8a03..1042862 100644 --- a/tests/test_editdistance.py +++ b/tests/test_editdistance.py @@ -1,190 +1,189 @@ -import sys -from itertools import combinations, permutations - -import numpy as np -import pytest - -from symspellpy.editdistance import ( - AbstractDistanceComparer, - DamerauOsa, - DamerauOsaFast, - DistanceAlgorithm, - EditDistance, - Levenshtein, - LevenshteinFast, -) - -SHORT_STRING = "string" -LONG_STRING = "long_string" -VERY_LONG_STRING = "very_long_string" - - -def expected_levenshtein(string_1, string_2, max_distance): - max_distance = int(min(2**31 - 1, max_distance)) - len_1 = len(string_1) - len_2 = len(string_2) - d = np.zeros((len_1 + 1, len_2 + 1)) - for i in range(len_1 + 1): - d[i, 0] = i - for i in range(len_2 + 1): - d[0, i] = i - for j in range(1, len_2 + 1): - for i in range(1, len_1 + 1): - if string_1[i - 1] == string_2[j - 1]: - # no operation - d[i, j] = d[i - 1, j - 1] - else: - d[i, j] = min( - min(d[i - 1, j] + 1, d[i, j - 1] + 1), d[i - 1, j - 1] + 1 - ) - distance = d[len_1, len_2] - return distance if distance <= max_distance else -1 - - -def expected_damerau_osa(string_1, string_2, max_distance): - max_distance = int(min(2**31 - 1, max_distance)) - len_1 = len(string_1) - len_2 = len(string_2) - d = np.zeros((len_1 + 1, len_2 + 1)) - for i in range(len_1 + 1): - d[i, 0] = i - for i in range(len_2 + 1): - d[0, i] = i - for i in range(1, len_1 + 1): - for j in range(1, len_2 + 1): - cost = 0 if string_1[i - 1] == string_2[j - 1] else 1 - d[i, j] = min(min(d[i - 1, j] + 1, d[i, j - 1] + 1), d[i - 1, j - 1] + cost) - if ( - i > 1 - and j > 1 - and string_1[i - 1] == string_2[j - 2] - and string_1[i - 2] == string_2[j - 1] - ): - d[i, j] = min(d[i, j], d[i - 2, j - 2] + cost) - distance = d[len_1, len_2] - return distance if distance <= max_distance else -1 - - -@pytest.fixture( - params=["damerau_osa", "levenshtein", "damerau_osa_fast", "levenshtein_fast"] -) -def get_comparer(request): - comparer_dict = { - "damerau_osa": {"actual": DamerauOsa(), "expected": expected_damerau_osa}, - "levenshtein": {"actual": Levenshtein(), "expected": expected_levenshtein}, - "damerau_osa_fast": { - "actual": DamerauOsaFast(), - "expected": expected_damerau_osa, - }, - "levenshtein_fast": { - "actual": LevenshteinFast(), - "expected": expected_levenshtein, - }, - } - yield comparer_dict[request.param]["actual"], comparer_dict[request.param][ - "expected" - ] - - -@pytest.fixture( - params=["damerau_osa", "levenshtein", "damerau_osa_fast", "levenshtein_fast"] -) -def get_edit_distance(request): - comparer_dict = { - "damerau_osa": { - "actual": EditDistance(DistanceAlgorithm.DAMERAU_OSA), - "expected": DamerauOsa, - }, - "levenshtein": { - "actual": EditDistance(DistanceAlgorithm.LEVENSHTEIN), - "expected": Levenshtein, - }, - "damerau_osa_fast": { - "actual": EditDistance(DistanceAlgorithm.DAMERAU_OSA_FAST), - "expected": DamerauOsaFast, - }, - "levenshtein_fast": { - "actual": EditDistance(DistanceAlgorithm.LEVENSHTEIN_FAST), - "expected": LevenshteinFast, - }, - } - yield comparer_dict[request.param]["actual"], comparer_dict[request.param][ - "expected" - ] - - -@pytest.fixture -def get_short_and_long_strings(): - return [ - (SHORT_STRING, None, {"null": len(SHORT_STRING), "zero": -1, "neg": -1}), - (LONG_STRING, None, {"null": -1, "zero": -1, "neg": -1}), - (None, SHORT_STRING, {"null": len(SHORT_STRING), "zero": -1, "neg": -1}), - (None, LONG_STRING, {"null": -1, "zero": -1, "neg": -1}), - (SHORT_STRING, SHORT_STRING, {"null": 0, "zero": 0, "neg": 0}), - (None, None, {"null": 0, "zero": 0, "neg": 0}), - ] - - -@pytest.fixture(params=[0, 1, 3, sys.maxsize]) -def get_strings(request): - alphabet = "abcd" - strings = [""] - for i in range(1, len(alphabet) + 1): - for combi in combinations(alphabet, i): - strings += ["".join(p) for p in permutations(combi)] - yield strings, request.param - - -class TestEditDistance: - def test_unknown_distance_algorithm(self): - with pytest.raises(ValueError) as excinfo: - _ = EditDistance(2) - assert "unknown distance algorithm" == str(excinfo.value) - - def test_abstract_distance_comparer(self): - with pytest.raises(TypeError) as excinfo: - comparer = AbstractDistanceComparer() - _ = comparer.distance("string_1", "string_2", 10) - assert str(excinfo.value).startswith( - "Can't instantiate abstract class AbstractDistanceComparer" - ) - - def test_internal_distance_comparer(self, get_edit_distance): - edit_distance, expected = get_edit_distance - assert isinstance(edit_distance._distance_comparer, expected) - - def test_comparer_match_ref(self, get_comparer, get_strings): - comparer, expected = get_comparer - strings, max_distance = get_strings - - for s1 in strings: - for s2 in strings: - assert expected(s1, s2, max_distance) == comparer.distance( - s1, s2, max_distance - ) - - def test_comparer_null_distance(self, get_comparer, get_short_and_long_strings): - comparer, _ = get_comparer - - for s1, s2, expected in get_short_and_long_strings: - distance = comparer.distance(s1, s2, 10) - assert expected["null"] == distance - - def test_comparer_negative_max_distance( - self, get_comparer, get_short_and_long_strings - ): - comparer, _ = get_comparer - - for s1, s2, expected in get_short_and_long_strings: - distance = comparer.distance(s1, s2, 0) - assert expected["zero"] == distance - - for s1, s2, expected in get_short_and_long_strings: - distance = comparer.distance(s1, s2, 0) - assert expected["neg"] == distance - - def test_comparer_very_long_string(self, get_comparer): - comparer, _ = get_comparer - distance = comparer.distance(SHORT_STRING, VERY_LONG_STRING, 5) - - assert -1 == distance +import sys +from itertools import combinations, permutations + +import pytest + +from symspellpy.editdistance import ( + AbstractDistanceComparer, + DamerauOsa, + DamerauOsaFast, + DistanceAlgorithm, + EditDistance, + Levenshtein, + LevenshteinFast, +) + +SHORT_STRING = "string" +LONG_STRING = "long_string" +VERY_LONG_STRING = "very_long_string" + + +def expected_levenshtein(string_1, string_2, max_distance): + max_distance = int(min(2**31 - 1, max_distance)) + len_1 = len(string_1) + len_2 = len(string_2) + d = [[0] * (len_2 + 1) for _ in range(len_1 + 1)] + for i in range(len_1 + 1): + d[i][0] = i + for i in range(len_2 + 1): + d[0][i] = i + for j in range(1, len_2 + 1): + for i in range(1, len_1 + 1): + if string_1[i - 1] == string_2[j - 1]: + # no operation + d[i][j] = d[i - 1][j - 1] + else: + d[i][j] = min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + 1) + distance = d[len_1][len_2] + return distance if distance <= max_distance else -1 + + +def expected_damerau_osa(string_1, string_2, max_distance): + max_distance = int(min(2**31 - 1, max_distance)) + len_1 = len(string_1) + len_2 = len(string_2) + d = [[0] * (len_2 + 1) for _ in range(len_1 + 1)] + for i in range(len_1 + 1): + d[i][0] = i + for i in range(len_2 + 1): + d[0][i] = i + for i in range(1, len_1 + 1): + for j in range(1, len_2 + 1): + cost = 0 if string_1[i - 1] == string_2[j - 1] else 1 + d[i][j] = min(d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + cost) + if ( + i > 1 + and j > 1 + and string_1[i - 1] == string_2[j - 2] + and string_1[i - 2] == string_2[j - 1] + ): + d[i][j] = min(d[i][j], d[i - 2][j - 2] + cost) + distance = d[len_1][len_2] + return distance if distance <= max_distance else -1 + + +@pytest.fixture( + params=["damerau_osa", "levenshtein", "damerau_osa_fast", "levenshtein_fast"] +) +def get_comparer(request): + comparer_dict = { + "damerau_osa": {"actual": DamerauOsa(), "expected": expected_damerau_osa}, + "levenshtein": {"actual": Levenshtein(), "expected": expected_levenshtein}, + "damerau_osa_fast": { + "actual": DamerauOsaFast(), + "expected": expected_damerau_osa, + }, + "levenshtein_fast": { + "actual": LevenshteinFast(), + "expected": expected_levenshtein, + }, + } + yield ( + comparer_dict[request.param]["actual"], + comparer_dict[request.param]["expected"], + ) + + +@pytest.fixture( + params=["damerau_osa", "levenshtein", "damerau_osa_fast", "levenshtein_fast"] +) +def get_edit_distance(request): + comparer_dict = { + "damerau_osa": { + "actual": EditDistance(DistanceAlgorithm.DAMERAU_OSA), + "expected": DamerauOsa, + }, + "levenshtein": { + "actual": EditDistance(DistanceAlgorithm.LEVENSHTEIN), + "expected": Levenshtein, + }, + "damerau_osa_fast": { + "actual": EditDistance(DistanceAlgorithm.DAMERAU_OSA_FAST), + "expected": DamerauOsaFast, + }, + "levenshtein_fast": { + "actual": EditDistance(DistanceAlgorithm.LEVENSHTEIN_FAST), + "expected": LevenshteinFast, + }, + } + yield ( + comparer_dict[request.param]["actual"], + comparer_dict[request.param]["expected"], + ) + + +@pytest.fixture +def get_short_and_long_strings(): + return [ + (SHORT_STRING, None, {"null": len(SHORT_STRING), "zero": -1, "neg": -1}), + (LONG_STRING, None, {"null": -1, "zero": -1, "neg": -1}), + (None, SHORT_STRING, {"null": len(SHORT_STRING), "zero": -1, "neg": -1}), + (None, LONG_STRING, {"null": -1, "zero": -1, "neg": -1}), + (SHORT_STRING, SHORT_STRING, {"null": 0, "zero": 0, "neg": 0}), + (None, None, {"null": 0, "zero": 0, "neg": 0}), + ] + + +@pytest.fixture(params=[0, 1, 3, sys.maxsize]) +def get_strings(request): + alphabet = "abcd" + strings = [""] + for i in range(1, len(alphabet) + 1): + for combi in combinations(alphabet, i): + strings += ["".join(p) for p in permutations(combi)] + yield strings, request.param + + +class TestEditDistance: + def test_unknown_distance_algorithm(self): + with pytest.raises(ValueError) as excinfo: + _ = EditDistance(2) + assert "unknown distance algorithm" == str(excinfo.value) + + def test_abstract_distance_comparer(self): + with pytest.raises(TypeError) as excinfo: + comparer = AbstractDistanceComparer() + _ = comparer.distance("string_1", "string_2", 10) + assert str(excinfo.value).startswith( + "Can't instantiate abstract class AbstractDistanceComparer" + ) + + def test_internal_distance_comparer(self, get_edit_distance): + edit_distance, expected = get_edit_distance + assert isinstance(edit_distance._distance_comparer, expected) + + def test_comparer_match_ref(self, get_comparer, get_strings): + comparer, expected = get_comparer + strings, max_distance = get_strings + + for s1 in strings: + for s2 in strings: + assert expected(s1, s2, max_distance) == comparer.distance( + s1, s2, max_distance + ) + + def test_comparer_null_distance(self, get_comparer, get_short_and_long_strings): + comparer, _ = get_comparer + + for s1, s2, expected in get_short_and_long_strings: + distance = comparer.distance(s1, s2, 10) + assert expected["null"] == distance + + def test_comparer_negative_max_distance( + self, get_comparer, get_short_and_long_strings + ): + comparer, _ = get_comparer + + for s1, s2, expected in get_short_and_long_strings: + distance = comparer.distance(s1, s2, 0) + assert expected["zero"] == distance + + for s1, s2, expected in get_short_and_long_strings: + distance = comparer.distance(s1, s2, 0) + assert expected["neg"] == distance + + def test_comparer_very_long_string(self, get_comparer): + comparer, _ = get_comparer + distance = comparer.distance(SHORT_STRING, VERY_LONG_STRING, 5) + + assert -1 == distance