-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinfer.py
116 lines (94 loc) · 3.35 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import cv2
import os
import numpy as np
import keras
from keras.applications import VGG16
from keras import backend as K
from keras.models import Model
import sys
import time
import multiprocessing
from termcolor import colored
model = keras.models.load_model('model/vlstm_92.h5')
image_model = VGG16(include_top=True, weights='imagenet')
#We will use the output of the layer prior to the final
# classification-layer which is named fc2. This is a fully-connected (or dense) layer.
transfer_layer = image_model.get_layer('fc2')
image_model_transfer = Model(inputs=image_model.input,outputs=transfer_layer.output)
transfer_values_size = K.int_shape(transfer_layer.output)[1]
# Frame size
img_size = 224
img_size_touple = (img_size, img_size)
# Number of channels (RGB)
num_channels = 3
# Flat frame size
img_size_flat = img_size * img_size * num_channels
# Number of classes for classification (Violence-No Violence)
num_classes = 2
# Number of files to train
_num_files_train = 1
# Number of frames per video
_images_per_file = 20
# Number of frames per training set
_num_images_train = _num_files_train * _images_per_file
# Video extension
video_exts = ".avi"
in_dir = "data"
def get_frames(current_dir, file_name):
in_file = os.path.join(current_dir, file_name)
images = []
vidcap = cv2.VideoCapture(in_file)
success,image = vidcap.read()
count = 0
while count<_images_per_file:
RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
res = cv2.resize(RGB_img, dsize=(img_size, img_size),interpolation=cv2.INTER_CUBIC)
images.append(res)
success,image = vidcap.read()
count += 1
resul = np.array(images)
resul = (resul / 255.).astype(np.float16)
return resul
def get_transfer_values(current_dir, file_name):
# Pre-allocate input-batch-array for images.
shape = (_images_per_file,) + img_size_touple + (3,)
image_batch = np.zeros(shape=shape, dtype=np.float16)
image_batch = get_frames(current_dir, file_name)
# Pre-allocate output-array for transfer-values.
# Note that we use 16-bit floating-points to save memory.
shape = (_images_per_file, transfer_values_size)
transfer_values = np.zeros(shape=shape, dtype=np.float16)
transfer_values = \
image_model_transfer.predict(image_batch)
return transfer_values
def infer(curr_dir,file_name):
tr = get_transfer_values(curr_dir,file_name)
tr = tr[np.newaxis,...]
pred = model.predict(np.array(tr))
res = np.argmax(pred[0])
if res == 0:
print("\n\n"+ colored('VIOLENT','red')+" Video with confidence: "+str(round(pred[0][res]*100,2))+" %")
else:
print("\n\n" + colored('NON-VIOLENT','green') +" Video with confidence: "+str(round(pred[0][res]*100,2))+" %")
if __name__ == "__main__":
arg = sys.argv
start_time = time.time()
infer(in_dir,arg[1])
end_time = time.time()
delta = round(end_time-start_time,2)
fps = round(20/delta,2)
print("Inferrence time: "+str(delta)+" s")
print(str(fps)+" fps ^_^")
vpath = in_dir + '\\' + arg[1]
cap = cv2.VideoCapture(vpath)
while(cap.isOpened()):
ret, frame = cap.read()
time.sleep(0.05)
try:
cv2.imshow('frame', frame)
except:
break
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()