Skip to content

Latest commit

 

History

History
210 lines (170 loc) · 4.65 KB

README.md

File metadata and controls

210 lines (170 loc) · 4.65 KB

Font Search System 🔍

A semantic font search system that uses natural language processing and vector embeddings to find fonts based on descriptions, characteristics, and use cases.

🌟 Features

  • Natural language font search
  • Semantic understanding of font characteristics
  • Vector-based similarity matching
  • Real-time preview of fonts
  • Dynamic card-based results interface
  • Persistent search index
  • RESTful API interface

🏗 Architecture

graph TD
    A[Frontend] -->|HTTP Request| B[Flask Backend]
    B -->|Vector Search| C[FAISS Index]
    B -->|Serve Images| D[Font Images]
    C -->|Load/Save| E[Saved Index]
    B -->|Load| F[Font Descriptions]
    
    subgraph "Search System"
        C
        G[Sentence Transformer]
        H[Vector Store]
    end
    
    subgraph "Static Assets"
        D
        F
    end
Loading

📁 Project Structure

fontsearch/
├── frontend/                 # Frontend files
│   ├── index.html           # Main search interface
│   └── index_old.html       # Previous version
├── font_descriptions/       # Font JSON metadata
├── rendered_fonts/         # Font preview images
├── serving_index/         # Search index files
├── app.py                # Flask application
├── vector_font_search.py # Vector search implementation
├── indexer.ipynb        # Index building notebook
└── sandbox.ipynb       # Development sandbox

🔄 Search Flow

sequenceDiagram
    participant U as User
    participant F as Frontend
    participant B as Backend
    participant S as Search Engine
    participant I as Image Store

    U->>F: Enter search query
    F->>B: POST /api/search
    B->>S: Vector search
    S->>B: Return matches
    B->>I: Get font previews
    B->>F: Return results
    F->>U: Display results
Loading

🚀 Getting Started

  1. Clone the repository:
git clone https://github.com/yourusername/fontsearch.git
cd fontsearch
  1. Install dependencies:
pip install -r requirements.txt
  1. Build the search index:
python -c "from vector_font_search import VectorFontSearch; \
           search = VectorFontSearch(images_dir='rendered_fonts'); \
           search.build_index('font_descriptions')"
  1. Start the Flask server:
python app.py
  1. Open frontend/index.html in your browser

💻 API Reference

Search Endpoint

POST /api/search
Content-Type: application/json

{
    "query": "fonts that are usually used in memes and trolling"
}

Response Format

[
    {
        "filename": "font_name.png",
        "description": "Font description...",
        "technical_characteristics": ["Bold", "Sans-serif"],
        "personality_traits": ["Modern", "Clean"],
        "practical_contexts": ["Headlines", "UI"],
        "score": 0.85,
        "image": "/fonts/font_name.png"
    }
]

🔍 Search Engine Architecture

graph LR
    A[Query] -->|Encode| B[Query Vector]
    B -->|Search| C[FAISS Index]
    C -->|Retrieve| D[Top K Results]
    D -->|Format| E[Response]
    
    subgraph "Vector Store"
        F[Font Vectors]
        G[Font Metadata]
        C -->|Index| F
        C -->|Lookup| G
    end
Loading

🛠 Technical Components

Vector Search

  • Uses Sentence Transformers for text embedding
  • FAISS for efficient similarity search
  • Inner product similarity metric
  • Automatic index persistence

Frontend

  • Pure HTML/JS implementation
  • Tailwind CSS for styling
  • Dynamic card layout
  • Responsive design
  • Real-time search

Backend

  • Flask REST API
  • Static file serving
  • CORS support
  • Error handling
  • JSON response formatting

🎨 Font Description Format

{
    "filename": "font_name.png",
    "status": "success",
    "description": {
        "detailed_description": "...",
        "technical_characteristics": [],
        "personality_traits": [],
        "practical_contexts": [],
        "cultural_intuition": [],
        "search_keywords": []
    }
}

🔧 Configuration

Key configuration options are available in the vector_font_search.py:

EMBEDDING_MODEL = 'all-MiniLM-L6-v2'  # Sentence transformer model
INDEX_TYPE = 'FlatIP'                # FAISS index type
NORMALIZE_VECTORS = True             # L2 normalization

📈 Performance

The system uses:

  • FAISS for efficient similarity search
  • Batched processing for embeddings
  • Caching of computed vectors
  • Persistent index storage

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.