forked from uber/h3-go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathh3_polygonAlgos.h
235 lines (204 loc) · 7.63 KB
/
h3_polygonAlgos.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
* Copyright 2018, 2020-2021 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file
* @brief Include file for poylgon algorithms. This includes the core
* logic for algorithms acting over loops of coordinates,
* allowing them to be reused for both GeoLoop and
* LinkegGeoLoop structures. This file is intended to be
* included inline in a file that defines the type-specific
* macros required for iteration.
*/
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include "h3_bbox.h"
#include "h3_constants.h"
#include "h3_h3api.h"
#include "h3_latLng.h"
#include "h3_linkedGeo.h"
#include "h3_polygon.h"
#ifndef TYPE
#error "TYPE must be defined before including this header"
#endif
#ifndef IS_EMPTY
#error "IS_EMPTY must be defined before including this header"
#endif
#ifndef INIT_ITERATION
#error "INIT_ITERATION must be defined before including this header"
#endif
#ifndef ITERATE
#error "ITERATE must be defined before including this header"
#endif
#define LOOP_ALGO_XTJOIN(a, b) a##b
#define LOOP_ALGO_TJOIN(a, b) LOOP_ALGO_XTJOIN(a, b)
#define GENERIC_LOOP_ALGO(func) LOOP_ALGO_TJOIN(func, TYPE)
/** Macro: Normalize longitude, dealing with transmeridian arcs */
#define NORMALIZE_LNG(lng, isTransmeridian) \
(isTransmeridian && lng < 0 ? lng + (double)M_2PI : lng)
/**
* pointInside is the core loop of the point-in-poly algorithm
* @param loop The loop to check
* @param bbox The bbox for the loop being tested
* @param coord The coordinate to check
* @return Whether the point is contained
*/
bool GENERIC_LOOP_ALGO(pointInside)(const TYPE *loop, const BBox *bbox,
const LatLng *coord) {
// fail fast if we're outside the bounding box
if (!bboxContains(bbox, coord)) {
return false;
}
bool isTransmeridian = bboxIsTransmeridian(bbox);
bool contains = false;
double lat = coord->lat;
double lng = NORMALIZE_LNG(coord->lng, isTransmeridian);
LatLng a;
LatLng b;
INIT_ITERATION;
while (true) {
ITERATE(loop, a, b);
// Ray casting algo requires the second point to always be higher
// than the first, so swap if needed
if (a.lat > b.lat) {
LatLng tmp = a;
a = b;
b = tmp;
}
// If the latitude matches exactly, we'll hit an edge case where
// the ray passes through the vertex twice on successive segment
// checks. To avoid this, adjust the latiude northward if needed.
//
// NOTE: This currently means that a point at the north pole cannot
// be contained in any polygon. This is acceptable in current usage,
// because the point we test in this function at present is always
// a cell center or vertex, and no cell has a center or vertex on the
// north pole. If we need to expand this algo to more generic uses we
// might need to handle this edge case.
if (lat == a.lat || lat == b.lat) {
lat += DBL_EPSILON;
}
// If we're totally above or below the latitude ranges, the test
// ray cannot intersect the line segment, so let's move on
if (lat < a.lat || lat > b.lat) {
continue;
}
double aLng = NORMALIZE_LNG(a.lng, isTransmeridian);
double bLng = NORMALIZE_LNG(b.lng, isTransmeridian);
// Rays are cast in the longitudinal direction, in case a point
// exactly matches, to decide tiebreakers, bias westerly
if (aLng == lng || bLng == lng) {
lng -= DBL_EPSILON;
}
// For the latitude of the point, compute the longitude of the
// point that lies on the line segment defined by a and b
// This is done by computing the percent above a the lat is,
// and traversing the same percent in the longitudinal direction
// of a to b
double ratio = (lat - a.lat) / (b.lat - a.lat);
double testLng =
NORMALIZE_LNG(aLng + (bLng - aLng) * ratio, isTransmeridian);
// Intersection of the ray
if (testLng > lng) {
contains = !contains;
}
}
return contains;
}
/**
* Create a bounding box from a simple polygon loop.
* Known limitations:
* - Does not support polygons with two adjacent points > 180 degrees of
* longitude apart. These will be interpreted as crossing the antimeridian.
* - Does not currently support polygons containing a pole.
* @param loop Loop of coordinates
* @param bbox Output bbox
*/
void GENERIC_LOOP_ALGO(bboxFrom)(const TYPE *loop, BBox *bbox) {
// Early exit if there are no vertices
if (IS_EMPTY(loop)) {
*bbox = (BBox){0};
return;
}
bbox->south = DBL_MAX;
bbox->west = DBL_MAX;
bbox->north = -DBL_MAX;
bbox->east = -DBL_MAX;
double minPosLng = DBL_MAX;
double maxNegLng = -DBL_MAX;
bool isTransmeridian = false;
double lat;
double lng;
LatLng coord;
LatLng next;
INIT_ITERATION;
while (true) {
ITERATE(loop, coord, next);
lat = coord.lat;
lng = coord.lng;
if (lat < bbox->south) bbox->south = lat;
if (lng < bbox->west) bbox->west = lng;
if (lat > bbox->north) bbox->north = lat;
if (lng > bbox->east) bbox->east = lng;
// Save the min positive and max negative longitude for
// use in the transmeridian case
if (lng > 0 && lng < minPosLng) minPosLng = lng;
if (lng < 0 && lng > maxNegLng) maxNegLng = lng;
// check for arcs > 180 degrees longitude, flagging as transmeridian
if (fabs(lng - next.lng) > M_PI) {
isTransmeridian = true;
}
}
// Swap east and west if transmeridian
if (isTransmeridian) {
bbox->east = maxNegLng;
bbox->west = minPosLng;
}
}
/**
* Whether the winding order of a given loop is clockwise, with normalization
* for loops crossing the antimeridian.
* @param loop The loop to check
* @param isTransmeridian Whether the loop crosses the antimeridian
* @return Whether the loop is clockwise
*/
static bool GENERIC_LOOP_ALGO(isClockwiseNormalized)(const TYPE *loop,
bool isTransmeridian) {
double sum = 0;
LatLng a;
LatLng b;
INIT_ITERATION;
while (true) {
ITERATE(loop, a, b);
// If we identify a transmeridian arc (> 180 degrees longitude),
// start over with the transmeridian flag set
if (!isTransmeridian && fabs(a.lng - b.lng) > M_PI) {
return GENERIC_LOOP_ALGO(isClockwiseNormalized)(loop, true);
}
sum += ((NORMALIZE_LNG(b.lng, isTransmeridian) -
NORMALIZE_LNG(a.lng, isTransmeridian)) *
(b.lat + a.lat));
}
return sum > 0;
}
/**
* Whether the winding order of a given loop is clockwise. In GeoJSON,
* clockwise loops are always inner loops (holes).
* @param loop The loop to check
* @return Whether the loop is clockwise
*/
bool GENERIC_LOOP_ALGO(isClockwise)(const TYPE *loop) {
return GENERIC_LOOP_ALGO(isClockwiseNormalized)(loop, false);
}