forked from acsutt0n/Drosophila-larvae_old
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMakeDerivFilter.m
146 lines (126 loc) · 4.28 KB
/
MakeDerivFilter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function dFilt = MakeDerivFilter(order, dx, fPass, fStop)
% dFilt = MakeDerivFilter(order, dx, fPass, fStop)
% Constructs a filter that takes noise-filtered derivatives of the
% requested order.
%
% Designed to be used in conjunction with FilterSignal.m
%
% Note that the quality of the filtered signal will be lower near
% the beginning and end.
% INPUTS:
% -order: order of the derivative
% -dx: sample spacing
% -fPass: low-pass frequency (this frequency and below should
% pass through the filter)
% -fStop: high-stop frequency (this frequency and above should be
% stopped by the filter)
% OUTPUTS:
% -dFilt: length-L cell array, When passed to FilterSignal, it
% will produce an array of derivatives sampled at the
% same times as the original signal.
if nargin ~= 4
help MakeDerivFilter
error('Invalid number of inputs')
end
if nargout ~= 1
help MakeDerivFilter
error('Invalid number of outputs')
end
wPass = 2*pi*dx*fPass;
wStop = 2*pi*dx*fStop;
halfLen = round(1.0 / (dx * fPass));
filterLen = 2 * halfLen + 1;
dFilt = cell(1, filterLen);
for delay=-halfLen:halfLen
n = delay + halfLen + 1;
dFilt{n} = constructFilter(order, dx, filterLen, delay, wPass, wStop);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dFilt = constructFilter(order, dx, filterLen, delay, ...
wPass, wStop)
useShift = false;
if ~useShift
minLen = max(round(0.5 * pi / wPass), order + mod(order, 2) + 5);
filterLen = filterLen - 2 * abs(delay);
if filterLen < minLen
delay = sign(delay) * round((minLen - filterLen) / 2);
filterLen = minLen;
% Can't (or don't know how) use this technique to make a
% reliable filter when the filterLen is this short. So make a
% polynomial (Savitzky-Golay) filter instead. It will at least
% produce sensible results, even if they aren't optimal.
polyOrder = max(order + 1, 2);
dFilt = getPolyFilter(polyOrder, order, dx, filterLen, delay);
return
else
delay = 0;
end
end
%The coefficients of this filter c_k are solutions to the equations
% For frequency w in the pass band:
% sum_k=-m:m c_k e^(i w k) = e^(i w delay) (i w)^order
% For frequency w in the stop band:
% sum_k=-m:m c_k e^(i w k) = 0
%To make the equations overdetermined, use roughly twice as many
% equations as needed (use real and imaginary parts, and treat as
% separate equations)
%Use half for the pass band, sampling evenly from w in [0 wPass]
% and half in the stop band, sampling evenly from w in [wStop pi]
halfLen = (filterLen - 1) / 2;
numEq = (halfLen + 1) * 4;
numPass = halfLen + 1;
numStop = numPass;
mat = zeros(numEq, filterLen);
vec = zeros(numEq, 1);
orderEven = (mod(order, 2) == 0);
fourierInd = -halfLen:halfLen;
wVec = linspace(0, wPass, numPass);
rowReal = -1;
for m = 1:numPass;
rowReal = rowReal + 2;
rowImag = rowReal + 1;
w = wVec(m);
mat(rowReal,:) = cos(w*fourierInd);
mat(rowImag,:) = sin(w*fourierInd);
if orderEven
w_order = w^order * (-1)^(order/2);
vec(rowReal) = w_order * cos(w * delay);
vec(rowImag) = w_order * sin(w * delay);
else
w_order = w^order * (-1)^((order - 1)/2);
vec(rowImag) = w_order * cos(w * delay);
vec(rowReal) = -w_order * sin(w * delay);
end
end
wVec = linspace(wStop, pi, numStop);
for m = 1:numStop
rowReal = rowReal + 2;
rowImag = rowReal + 1;
w = wVec(m);
mat(rowReal,:) = cos(w*fourierInd);
mat(rowImag,:) = sin(w*fourierInd);
end
%calculate the dx-independent coeffients of the filter:
dFilt = pinv(mat) * vec;
%reverse for convolution, multiply by appropriate power of dx:
dFilt = dFilt(filterLen:-1:1) * (dx^-order);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function dFilt = getPolyFilter(polyOrder, order, dx, filterLen, ...
delay)
% At edges, fall back to using Savitzky-Golay filter, which is
% reliable even if it's difficult to precisely tune its frequency
% characteristics.
J = zeros(filterLen, polyOrder + 1);
halfLen = (filterLen - 1) / 2;
n = (-halfLen-delay):(halfLen-delay)';
for m = 0:polyOrder
J(:, m+1) = n.^m;
end
JInv = pinv(J);
%calculate the dx-independent coeffients of the filter:
dFilt = factorial(order) * JInv(order+1,:);
%reverse for convolution, multiply by appropriate power of dx:
dFilt = dFilt(filterLen:-1:1) * (dx^-order);
return