-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdominance.py
53 lines (41 loc) · 1.71 KB
/
dominance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
from criterion import Criterion
def is_dominated(row: pd.Series, df: pd.DataFrame, criteria: dict[str, Criterion]) -> bool:
"""
Return True if the row is dominated by at least one row in the dataframe
"""
for i in range(len(df)):
# Do not compare the row with itself
if (df.iloc[i] == row).all():
continue
other_row: pd.Series = df.iloc[i]
for criterion, descriptors in criteria.items():
if descriptors.veto != 0 and abs(row[criterion] - other_row[criterion]) > descriptors.veto:
return False
if (
descriptors.direction == "maximize"
and row[criterion] + descriptors.indifference < other_row[criterion]
):
return True
elif (
descriptors.direction == "minimize"
and row[criterion] - descriptors.indifference > other_row[criterion]
):
return True
return False
def retrieve_pareto_front(df: pd.DataFrame, criteria: dict[str, Criterion]) -> pd.DataFrame:
"""
Return the Pareto front, i.e. the subset of non-dominated solutions
"""
return df[~df.apply(is_dominated, axis=1, df=df, criteria=criteria)]
if __name__ == "__main__":
input_path = "data/"
output_path = "output/"
initial_solutions: pd.DataFrame = pd.read_csv(
input_path + "data.csv"
)
criteria: dict = {"C4": Criterion("minimize", 30, 0), "C6": Criterion("maximize", 1, 0)}
preanalysed_solutions: pd.DataFrame = retrieve_pareto_front(
initial_solutions, criteria
)
preanalysed_solutions.to_csv(output_path + "preanalysed_solutions_dominance.csv", index=False)