-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathelectre_1.py
177 lines (139 loc) · 5.66 KB
/
electre_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import pandas as pd
from typing import Union
import networkx as nx
import matplotlib.pyplot as plt
from criterion import Criterion
from normalize import *
def concordance(row1: pd.Series, row2: pd.Series, criteria: dict[str, Criterion]) -> Union[None, float]:
"""
Return the concordance of the two rows
"""
concordance: Union[None, float] = 0
for criterion, descriptors in criteria.items():
if descriptors.veto != 0 and abs(row1[criterion] - row2[criterion]) > descriptors.veto:
return None
if (row1[criterion] + descriptors.indifference) >= row2[criterion]:
concordance += descriptors.weight
return concordance
def get_concordance_matrix(df: pd.DataFrame, criteria: dict[str, Criterion]) -> pd.DataFrame:
"""
Return the concordance matrix of the dataframe
"""
concordance_matrix: pd.DataFrame = pd.DataFrame(index=df.index, columns=df.index)
for i in range(len(df)):
for j in range(len(df)):
if i == j:
concordance_matrix.loc[i, j] = None
else:
concordance_matrix.loc[i, j] = concordance(
df.loc[i], df.loc[j], criteria
)
return concordance_matrix
def discordance(row1: pd.Series, row2: pd.Series, criteria: dict[str, Criterion]) -> Union[None, float]:
"""
Return the discordance of the two rows
"""
observed_discordances: list = []
for criterion, descriptors in criteria.items():
if descriptors.veto != 0 and abs(row1[criterion] - row2[criterion]) > descriptors.veto:
return None
if (row1[criterion] + descriptors.indifference) < row2[criterion]:
observed_discordances.append(abs(row2[criterion] - (row1[criterion])))
else:
observed_discordances.append(0)
return max(observed_discordances)
def get_discordance_matrix(df: pd.DataFrame, criteria: dict[str, Criterion]) -> pd.DataFrame:
"""
Return the discordance matrix of the dataframe
"""
discordance_matrix: pd.DataFrame = pd.DataFrame(index=df.index, columns=df.index)
for i in range(len(df)):
for j in range(len(df)):
if i == j:
discordance_matrix.loc[i, j] = None
else:
discordance_matrix.loc[i, j] = discordance(
df.loc[i], df.loc[j], criteria
)
return discordance_matrix
def get_treshold_matrix(
concordance_matrix: pd.DataFrame,
discordance_matrix: pd.DataFrame,
concordance_treshold: float,
discordance_treshold: float,
criteria: dict[str, Criterion],
) -> pd.DataFrame:
"""
Return the matrix of relations respecting the tresholds
"""
treshold_matrix: pd.DataFrame = pd.DataFrame(
index=concordance_matrix.index, columns=concordance_matrix.columns
)
# Multiply concordance treshold by the sum of the weights (to have the same scale as the concordance matrix)
concordance_treshold *= sum([descriptors.veto for descriptors in criteria.values()])
# Multiply the discordance treshold by the maximum discordance in the discordance matrix (to have the same scale as the discordance matrix)
discordance_treshold *= discordance_matrix.max().max()
for i in range(len(concordance_matrix)):
for j in range(len(concordance_matrix)):
if i == j:
treshold_matrix.loc[i, j] = None
else:
if concordance_matrix.loc[i, j] is None:
treshold_matrix.loc[i, j] = None
elif (
concordance_matrix.loc[i, j] >= concordance_treshold
and discordance_matrix.loc[i, j] <= discordance_treshold
):
treshold_matrix.loc[i, j] = True
else:
treshold_matrix.loc[i, j] = False
return treshold_matrix
def visualize_matrix(matrix: pd.DataFrame):
"""
Visualize the matrix as a graph
"""
G = nx.DiGraph()
for node in matrix.index:
G.add_node(node)
for i in range(len(matrix)):
for j in range(len(matrix)):
if matrix.iloc[i, j] is True:
G.add_edge(i, j)
pos = nx.circular_layout(G)
nx.draw(G, pos, with_labels=True, arrows=True)
plt.show()
if __name__ == "__main__":
input_path = "data/"
output_path = "output/"
initial_solutions: pd.DataFrame = pd.read_csv(
#output_path + "preanalysed_solutions_satisfaction.csv"
output_path + "preanalysed_solutions_dominance.csv"
)
criteria: dict = {
"C1": Criterion("minimize", 50000, 0, weight=1),
"C2": Criterion("minimize", 0, 0, weight=2),
"C3": Criterion("maximize", 0, 0, weight=4),
"C4": Criterion("minimize", 30, 0, weight=5),
"C5": Criterion("minimize", 0, 0, weight=3),
"C6": Criterion("maximize", 1, 0, weight=5),
"C7": Criterion("maximize", 0, 2, weight=3),
}
# Retrieve the normalized solutions and new indifference and veto thresholds
normalized_solutions: pd.DataFrame = normalize(initial_solutions, criteria, use_weight=True)
criteria = normalize_criteria(normalized_solutions, criteria)
concordance_treshold: float = 0.95
discordance_treshold: float = 0.6
concordance_matrix: pd.DataFrame = get_concordance_matrix(
normalized_solutions, criteria
)
discordance_matrix: pd.DataFrame = get_discordance_matrix(
normalized_solutions, criteria
)
treshold_matrix: pd.DataFrame = get_treshold_matrix(
concordance_matrix,
discordance_matrix,
concordance_treshold,
discordance_treshold,
criteria,
)
visualize_matrix(treshold_matrix)