This document has instructions for running SSD-ResNet34 training using Intel-optimized PyTorch.
Script name | Description |
---|---|
throughput.sh |
Tests the training performance for SSD-ResNet34 for the specified precision (fp32, avx-fp32, bf32 or bf16). |
accuracy.sh |
Tests the training accuracy for SSD-ResNet34 for the specified precision (fp32, avx-fp32, bf32 or bf16). |
Note: The avx-fp32
precision runs the same scripts as fp32
, except that the DNNL_MAX_CPU_ISA
environment variable is unset. The environment variable is otherwise set to DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
.
- Set ENV to use AMX:
export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
| Distributed Training |
DataType | Throughput | Accuracy |
---|---|---|
FP32 | bash throughput_dist.sh fp32 | bash accuracy_dist.sh fp32 |
BF16 | bash throughput_dist.sh bf16 | bash accuracy_dist.sh bf16 |
BF32 | bash throughput_dist.sh bf32 | bash accuracy_dist.sh bf32 |
Follow link to install Miniconda and build Pytorch, IPEX, TorchVison, Torch-CCL TCmalloc and Jemalloc.
-
Set Jemalloc and tcmalloc Preload for better performance
The jemalloc should be built from the General setup section.
export LD_PRELOAD="<path to the jemalloc directory>/lib/libjemalloc.so":"path_to/tcmalloc/lib/libtcmalloc.so":$LD_PRELOAD export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:9000000000,muzzy_decay_ms:9000000000"
-
Set IOMP preload for better performance
IOMP should be installed in your conda/virtual env from the General setup section.
pip install packaging intel-openmp export LD_PRELOAD=path/lib/libiomp5.so:$LD_PRELOAD
-
Set ENV to use multi-node distributed training (no need for single-node multi-sockets)
In this case, we use data-parallel distributed training and every rank will hold same model replica. The NNODES is the number of ip in the HOSTFILE. To use multi-nodes distributed training you should firstly setup the passwordless login (you can refer to link) between these nodes.
export NNODES=#your_node_number export HOSTFILE=your_ip_list_file #one ip per line
Once all the setup is done, the Intel® AI Reference Models repo can be used to run a quickstart script. Ensure that you have an enviornment variables set to point to the dataset directory and an output directory.
# Clone the Intel® AI Reference Models riepo and set the MODEL_DIR
git clone https://github.com/IntelAI/models.git
cd models
export MODEL_DIR=$(pwd)
# Dataset
Download the 2017 [COCO dataset](https://cocodataset.org) using the `download_dataset.sh` script.
Export the `DATASET_DIR` environment variable to specify the directory where the dataset
will be downloaded. This environment variable will be used again when running quickstart scripts.
cd quickstart/object_detection/pytorch/ssd-resnet34/training/cpu
export DATASET_DIR=<directory where the dataset will be saved>
bash download_dataset.sh
cd -
cd ${MODEL_DIR}
# install model specific dependencies
./quickstart/object_detection/pytorch/ssd-resnet34/training/cpu/setup.sh
# Download pretrained model
export CHECKPOINT_DIR=<directory where the pretrained model will be saved>
bash quickstart/object_detection/pytorch/ssd-resnet34/training/cpu/download_model.sh
# Env vars
export DATASET_DIR=<path to the COCO dataset>
export OUTPUT_DIR=<path to an output directory>
export PRECISION=<select from :- fp32, avx-fp32, bf16, or bf32>
# Optional environemnt variables:
export BATCH_SIZE=<set a value for batch size, else it will run with default batch size>
# Run a quickstart script
./quickstart/object_detection/pytorch/ssd-resnet34/training/cpu/<script.sh>