-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathogcnn.py
338 lines (274 loc) · 11 KB
/
ogcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader, random_split
import torchvision.transforms as transforms
from tqdm import tqdm
import pickle as pkl
import numpy as np
import random
import wandb
from math import sqrt
import fire
import os
random.seed(42)
np.random.seed(42)
torch.random.manual_seed(42)
class Cnn(nn.Module): # We are defining to pytorch that we are building a model
def __init__(
self,
in_size: tuple = (32, 32, 1),
targets: int = 2,
filter_size: int = 64,
padding: int = 1,
kernel_conv: int = 3,
hiddenlayer: int = 512,
):
super().__init__() # This initializes all the torch things
self.filter_size = filter_size
self.kernel_conv = kernel_conv
self.padding = padding
self.hiddenlayer = hiddenlayer
self.input_layer = nn.Conv2d( # 32x32 pixels
in_channels=in_size[-1],
out_channels=self.filter_size,
kernel_size=self.kernel_conv,
padding=self.padding,
)
self.relu = ( # Activation function
nn.ReLU() # We can change this to leaky Relu if we need something a bit more fancy
)
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) # 16x16 pixels
self.layer2 = nn.Conv2d(
in_channels=self.filter_size,
out_channels=self.filter_size * 2,
kernel_size=self.kernel_conv,
padding=self.padding,
)
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) # 8x8 pixels
self.layer3 = nn.Conv2d(
in_channels=self.filter_size * 2,
out_channels=self.filter_size * 4,
kernel_size=self.kernel_conv,
padding=self.padding,
)
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=2) # 4x4 pixels
self.fc1 = nn.Linear(
in_features=self.filter_size * 4 * (in_size[0] // 8) * (in_size[1] // 8),
out_features=self.hiddenlayer,
) # Fully connected layer 1, aka flattened layer 1
# self.dropout = nn.Dropout(0.25)
self.fc2 = nn.Linear(
in_features=self.hiddenlayer, out_features=targets
) # Fully connected layer 2, aka just the output layer
def forward(self, x: torch.Tensor):
x = self.input_layer(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer2(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.layer3(x)
x = self.relu(x)
x = self.maxpool3(x)
x = x.view(x.size(0), -1) # This is how you flatten
x = self.fc1(x)
x = self.relu(x)
# x = self.dropout(x)
x = self.fc2(x)
# x = torch.clamp(x, min=1, max=5)
return x
# Define the CNN model (same as used during training)
class Cnn8(torch.nn.Module):
def __init__(self, in_size=(8, 8, 1), targets=2, filter_size=64, padding=1, kernel_conv=3, hiddenlayer=512):
super().__init__()
self.filter_size = filter_size
self.kernel_conv = kernel_conv
self.padding = padding
self.hiddenlayer = hiddenlayer
self.input_layer = torch.nn.Conv2d(
in_channels=in_size[-1], out_channels=self.filter_size, kernel_size=self.kernel_conv, padding=self.padding)
self.relu = torch.nn.ReLU()
self.maxpool1 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
self.layer2 = torch.nn.Conv2d(in_channels=self.filter_size, out_channels=self.filter_size * 2,
kernel_size=self.kernel_conv, padding=self.padding)
self.maxpool2 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
self.layer3 = torch.nn.Conv2d(in_channels=self.filter_size * 2, out_channels=self.filter_size * 4,
kernel_size=self.kernel_conv, padding=self.padding)
self.maxpool3 = torch.nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = torch.nn.Linear(in_features=self.filter_size * 4 * (in_size[0] // 8) * (in_size[1] // 8),
out_features=self.hiddenlayer)
self.fc2 = torch.nn.Linear(in_features=self.hiddenlayer, out_features=targets)
def forward(self, x: torch.Tensor):
x = self.input_layer(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer2(x)
x = self.relu(x)
x = self.maxpool2(x)
x = self.layer3(x)
x = self.relu(x)
x = self.maxpool3(x)
x = x.view(x.size(0), -1) # Flatten
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
class CFMS(Dataset):
def __init__(
self,
cfms_path="./data_og/raw/cfms.pkl",
labels_path="./data_og/raw/labels.pkl",
transform=None,
):
with open(cfms_path, "rb") as file_:
self.cfms = pkl.load(file_)
with open(labels_path, "rb") as file_:
self.labels = pkl.load(file_)
self.transform = transform
def __getitem__(self, index):
cfms = self.cfms[index].astype(np.float32)
if self.transform:
cfms = self.transform(cfms)
label = torch.tensor(self.labels[index], dtype=torch.float32)
return cfms, label
def __len__(self):
return self.cfms.shape[0]
def r2_score(y_true, y_pred):
ss_res = torch.sum((y_true - y_pred) ** 2) # Residual sum of squares
ss_tot = torch.sum((y_true - torch.mean(y_true)) ** 2) # Total sum of squares
r2 = 1 - ss_res / ss_tot
return r2
def main(batch_size=64, device="mps", lr=1e-3, epochs=200, in_size=(8, 8, 1)):
torch.set_num_threads(8)
name_model = f"8x8{batch_size}_{lr}_{epochs}epochs_512hiddenlayers"
wandb.init(
project="Hackaton",
name=name_model,
config=locals(),
) # Setup the tracker, locals() refers to the args in the main()
# Define the transformations for the dataset
transform = transforms.Compose(
[
transforms.ToTensor(), # Convert images to tensor
transforms.Resize(
(in_size[0], in_size[1])
), # Make the CFMS a bit larger (maybe check this as a hparam)
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), May reenable to improve results
] # Normalize the images
)
# Load the training set
dataset = CFMS(transform=transform)
# Define the sizes for train, validation, and test sets
train_size = int(0.8 * len(dataset)) # 80% for training
val_size = len(dataset) - train_size # 10% for validation
# test_size = len(dataset) - train_size - val_size # 10% for test
# Split the dataset into train, val, and test
trainset, val_dataset = random_split(dataset, [train_size, val_size])
trainloader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
)
valloader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
)
# testloader = DataLoader(
# test_dataset,
# batch_size=batch_size,
# shuffle=False,
# )
model = Cnn8()
model.to(device)
wandb.watch(model)
lossfn = nn.MSELoss() # Use MSE bc we are doing regression
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
for epoch in range(epochs):
model.train()
total_train = 0.0
total_r2_train = 0.0
totals = 0
with tqdm(total=len(trainloader.dataset) // batch_size) as pbar:
for i, (cfms, targets) in enumerate(trainloader):
cfms = cfms.to(device)
targets = targets.to(device)
optimizer.zero_grad() # Important to do first so it cleans the gradient of the last batch/steps
outputs = model(cfms)
loss = lossfn(outputs, targets)
loss.backward()
optimizer.step()
pbar.set_postfix({"loss": loss.item()})
pbar.update()
r2_train = r2_score(targets, outputs)
total_train += loss.item()
total_r2_train += r2_train.item()
totals += i
wandb.log(
{
"losses/train_loss": loss.item(),
"losses/train_loss_RMSE": sqrt(loss.item()),
"train r2": r2_train.item(),
}
)
wandb.log(
{
"losses/total_train": total_train / totals,
"losses/total_train_loss_RMSE": sqrt(total_train / totals),
"losses/total_r2_train": total_r2_train / totals,
}
)
model.eval()
with torch.no_grad(): # Enforces not using gradients
with tqdm(total=len(valloader.dataset) // batch_size) as pbar:
validation_loss = 0
validation_r2 = 0
totals = 0
for i, (cfms, targets) in enumerate(valloader):
cfms = cfms.to(device)
targets = targets.to(device)
outputs = model(cfms)
loss = lossfn(outputs, targets)
validation_loss += loss.item()
totals += i
pbar.set_postfix({"loss": loss.item()})
pbar.update()
r2_val = r2_score(targets, outputs)
validation_r2 += r2_val.item()
avg_val_loss = validation_loss / totals
avg_val_r2 = validation_r2 / totals
wandb.log(
{
"losses/validation_loss": avg_val_loss,
"losses/validation_RMSE": sqrt(avg_val_loss),
"r2/validation_r2": avg_val_r2,
}
)
print("Validation_loss:", validation_loss / totals)
# Do Test
# with torch.no_grad():
# with tqdm(total=len(testloader.dataset) // batch_size) as pbar:
# test_loss = 0
# totals = 0
# for i, (cfms, targets) in enumerate(testloader):
# cfms = cfms.to(device)
# targets = targets.to(device)
# outputs = model(cfms)
# loss = lossfn(outputs, targets)
# test_loss += loss.item()
# totals += cfms.size(0)
# pbar.set_postfix({"loss": loss.item()})
# pbar.update()
# wandb.log({"losses/test_loss": test_loss / totals})
# wandb.log({"losses/test_RMSE": sqrt(test_loss / totals)})
# print("Validation_loss:", test_loss / totals)
# Evaluation loop goes here when you have defined the loader etc.
# The model.eval() is important so the weights dont update
# The with nograd is also important for that
# Save the model
save_to = "./models_og"
if not os.path.exists(save_to):
os.makedirs(save_to, exist_ok=True)
torch.save(model.state_dict(), f"{save_to}/{name_model}.pt")
if __name__ == "__main__":
fire.Fire(main())