-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_server.py
58 lines (47 loc) · 2.41 KB
/
test_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import unittest
import torch
from server import Server
from models import model_factory
from utils import Args
class TestServer(unittest.TestCase):
def setUp(self):
# Set up dummy arguments for testing
self.args = Args(
model='mnist2nn'
)
# Initialize a Server object
self.server = Server(self.args)
def test_server_initialization(self):
# Check if the server model is initialized correctly
self.assertIsInstance(self.server.model, torch.nn.Module)
def test_get_global_model(self):
# Get the global model's state dict and verify it's a dictionary
global_model_state = self.server.get_global_model()
self.assertIsInstance(global_model_state, dict)
self.assertTrue(all(isinstance(k, str) and isinstance(v, torch.Tensor) for k, v in global_model_state.items()))
def test_set_global_model(self):
# Create a new state dict and set it as the global model state
dummy_state_dict = model_factory[self.args.model]().state_dict()
self.server.set_global_model(dummy_state_dict)
# Verify that the server's model state was updated correctly
server_model_state = self.server.get_global_model()
for key in dummy_state_dict:
self.assertTrue(torch.equal(server_model_state[key], dummy_state_dict[key]))
def test_aggregate(self):
# Create two dummy state dictionaries to simulate local model weights
model_weights_1 = model_factory[self.args.model]().state_dict()
model_weights_2 = model_factory[self.args.model]().state_dict()
# Modify the second state dictionary slightly to ensure aggregation changes
for key in model_weights_2:
model_weights_2[key] += 1.0
# List of model weights and scaling factors
model_weights = [model_weights_1, model_weights_2]
scaling_factors = [0.6, 0.4] # Weights sum up to 1.0 for proper averaging
# Aggregate the model weights using the server's method
aggregated_weights = self.server.aggregate(model_weights, scaling_factors)
# Verify that the aggregation works as expected
for key in model_weights_1:
expected_value = model_weights_1[key] * scaling_factors[0] + model_weights_2[key] * scaling_factors[1]
self.assertTrue(torch.allclose(aggregated_weights[key], expected_value))
if __name__ == '__main__':
unittest.main()