-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
executable file
·232 lines (175 loc) · 8.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python3
"""
Get eval result of models.
"""
import os
import pickle
import argparse
from pathlib import Path
import cv2
import torch
import numpy as np
from tqdm import tqdm
from nuscenes.utils.data_classes import Box, LidarPointCloud, RadarPointCloud
from model import Network
from utils import (
canvas_filter,
get_depth_map,
get_radar_map,
map_pointcloud_to_image)
class conf:
datasets = {
'nuscenes': './data/nuscenes_radar_5sweeps_infos_test.pkl',
}
default_dataset = 'nuscenes'
max_depth = 80
min_depth = 0
def path2label(path):
return path.rstrip('/').replace('/', '_')
rng = np.random.default_rng()
class Vidar:
data_root = './data/nuscenes/samples/'
def __init__(self, path):
with open(path, 'rb') as f:
self.infos = pickle.loads(f.read())
# self.infos = self.infos[::10][:512]
self.radar_load_dim = 18 # self.radar_data_conf["radar_load_dim"]
self.radar_use_dims = [0, 1, 2, 5, 6, 7, 8, 9, 12, 13, 16, 17] # [x y z] dyn_prop id [rcs vx vy vx_comp vy_comp] is_quality_valid ambig_state [x_rms y_rms] invalid_state pdh0 [vx_rms vy_rms] + [timestamp_diff]
self.RADAR_PTS_NUM = 200
# Todo support multi-view Depth Completion
# Now we follow the previous research, only use the front Camera and Radar
self.radar_use_type = 'RADAR_FRONT'
self.camera_use_type = 'CAM_FRONT'
self.lidar_use_type = 'LIDAR_TOP'
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def set_model(self, model_path):
self.model_path = model_path
self.net = self.load_model(self.model_path, self.device)
@staticmethod
def load_model(model_path, device):
checkpoint = torch.load(
model_path,
map_location=device
)
net = Network().to(device)
net.load_state_dict(checkpoint['network'])
net.eval()
return net
def __len__(self):
return len(self.infos)
def get_params(self, data):
params = dict()
if 'calibrated_sensor' in data.keys():
params['sensor2ego'] = data['calibrated_sensor']
else:
params['sensor2ego'] = dict()
params['sensor2ego']['translation'] = data['sensor2ego_translation']
params['sensor2ego']['rotation'] = data['sensor2ego_rotation']
if 'ego_pose' in data.keys():
params['ego2global'] = data['ego_pose']
else:
params['ego2global'] = dict()
params['ego2global']['translation'] = data['ego2global_translation']
params['ego2global']['rotation'] = data['ego2global_rotation']
return params
# 这里做了改动, 直接输出Radar的深度图好了, 是在受不了复杂的逻辑
def __getitem__(self, index):
data = self.infos[index]
# get cameras images only for front
camera_infos = data['cam_infos'][self.camera_use_type]
camera_params = self.get_params(camera_infos)
camera_filename = camera_infos['filename'].split('samples/')[-1]
img = cv2.imread(os.path.join(self.data_root, camera_filename))
# get radars only for front
radar_infos = data['radar_infos'][self.radar_use_type][0]
radar_params = self.get_params(radar_infos)
path = radar_infos['data_path'].split('samples/')[-1]
radar_obj = RadarPointCloud.from_file(os.path.join(self.data_root, path))
radar_all = radar_obj.points.transpose(1,0)[:, self.radar_use_dims]
radar = np.concatenate((radar_all[:, :3], np.ones([radar_all.shape[0], 1])), axis=1)
# get lidar top
lidar_infos = data['lidar_infos'][self.lidar_use_type]
lidar_params = self.get_params(lidar_infos)
path = lidar_infos['filename'].split('samples/')[-1]
lidar_obj = LidarPointCloud.from_file(os.path.join(self.data_root, path))
lidar = lidar_obj.points.transpose(1,0)[:, :3]
lidar = np.concatenate((lidar, np.ones([lidar.shape[0], 1])), axis=1)
# project lidar and radar to image coordinates
lidar_pts, lidar = map_pointcloud_to_image(lidar, lidar_params['sensor2ego'], lidar_params['ego2global'],
camera_params['sensor2ego'], camera_params['ego2global'])
radar_pts, radar = map_pointcloud_to_image(radar, radar_params['sensor2ego'], radar_params['ego2global'],
camera_params['sensor2ego'], camera_params['ego2global'])
radar_pts = radar_pts[:, :3]
valid_radar_pts_cnt = radar_pts.shape[0]
if valid_radar_pts_cnt <= self.RADAR_PTS_NUM:
padding_radar_pts = np.zeros((self.RADAR_PTS_NUM, 3), dtype=radar_pts.dtype)
padding_radar_pts[:valid_radar_pts_cnt,:] = radar_pts
else:
random_idx = sorted(rng.choice(range(valid_radar_pts_cnt), size=(self.RADAR_PTS_NUM,), replace=False))
padding_radar_pts = radar_pts[random_idx,:]
lidar = get_depth_map(lidar[:, :3], img.shape[:2])
inds = canvas_filter(radar[:, :2], img.shape[:2])
radar = radar[inds]
radar = get_radar_map(radar[:, :3], img.shape[:2])
lidar, radar = (np.array(d) for d in (lidar, radar))
lidar, radar = (d[None] for d in (lidar, radar))
img = img.transpose(2, 0, 1)
valid_radar_pts_cnt = np.array(valid_radar_pts_cnt)
return img, padding_radar_pts, valid_radar_pts_cnt, radar, lidar
def get_error(self, diffs, mask):
mae = np.mean(np.abs(diffs[mask]))
rmse = np.sqrt(np.mean(diffs[mask]**2))
return mae, rmse
def eval(self, model_path):
if model_path is not None:
self.set_model(model_path)
errors, errors_50, errors_70 = [], [], []
rmses, rmses_50, rmses_70 = [], [], []
for ind in tqdm(range(len(self))):
img, padding_radar_pts, valid_radar_pts_cnt, radar, lidar = self[ind]
img, radar, padding_radar_pts, valid_radar_pts_cnt = (inp[None] for inp in (img, radar, padding_radar_pts, valid_radar_pts_cnt))
with torch.no_grad():
pred, _ = self.net.forward_test(img, radar, padding_radar_pts, valid_radar_pts_cnt)
pred, lidar = ( arr.reshape(-1) for arr in (pred, lidar))
mask1 = (lidar > 0) & (lidar <= 80)
mask2 = (lidar > 0) & (lidar <= 50)
mask3 = (lidar > 0) & (lidar <= 70)
diff = pred - lidar
diff80, rmse80 = self.get_error(diff, mask1)
diff50, rmse50 = self.get_error(diff, mask2)
diff70, rmse70 = self.get_error(diff, mask3)
errors.append(diff80)
errors_50.append(diff50)
errors_70.append(diff70)
rmses.append(rmse80)
rmses_50.append(rmse50)
rmses_70.append(rmse70)
result = {
'epe:0-80':float(np.mean(errors)), 'rmse:0-80':float(np.mean(rmses)),
'epe:0-50':float(np.mean(errors_50)), 'rmse:0-50':float(np.mean(rmses_50)),
'epe:0-70':float(np.mean(errors_70)), 'rmse:0-70':float(np.mean(rmses_70)),}
tqdm.write(', '.join([
'{}: {:.5}'.format(k, v) for k, v in result.items()]))
return result
@staticmethod
def proj_2d_to_3d(pts, K):
d = pts[:, 2:]
pts = np.concatenate((pts[:, :2] * d, d), 1)
return pts @ np.linalg.inv(K).T
def proj_2d_map_to_3d(self, pred, mask, K):
y, x = np.where(mask)
pts = np.stack((x, y, pred[mask]), 1)
return self.proj_2d_to_3d(pts, K)
def main():
parser = argparse.ArgumentParser(
description='Get eval result for models.')
parser.add_argument(
'-d', '--dataset', default=conf.default_dataset,
help='Dataset name or lovelive dataset id.')
parser.add_argument(
'-m', '--model', type=str)
args = parser.parse_args()
dataset = Vidar(conf.datasets[args.dataset])
dataset.eval(args.model)
if __name__ == '__main__':
main()