-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathhelper_monkey.py
executable file
·355 lines (307 loc) · 13.6 KB
/
helper_monkey.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
#!/usr/bin/env python3
"""
Created on Fri Jan 8 11:25:49 2021
@author: metalcorebear
"""
import cbpro
import numpy as np
import pandas as pd
from datetime import datetime
from datetime import timedelta
import time
# data acquistion functions
def get_product_data(pair):
output = {}
public_client = cbpro.PublicClient()
products = public_client.get_products()
for item in products:
if item['id'] == pair:
output.update(item)
return output
def get_historic_data(pair='BTC-USD', granularity=900, **options):
public_client = cbpro.PublicClient()
history = public_client.get_product_historic_rates(pair, granularity=granularity)
history_array = np.array(history)
history_pd = pd.DataFrame(history_array, columns=['time', 'low', 'high', 'open', 'close', 'volume'])
return history_pd, history_array
def get_latest(pair='BTC-USD', granularity=900):
public_client = cbpro.PublicClient()
start = datetime.now()
end = start + timedelta(minutes=int(granularity/60))
history = public_client.get_product_historic_rates(pair, granularity=granularity, start=str(start.isoformat()), end=str(end.isoformat()))
#history_array = np.array(history)
return history
def new_history(history_array, history):
history_array_list = history_array.tolist()
history.extend(history_array_list)
history_array = np.array(history)
#history = np.array(history, dtype=history_array.dtype)
#history_array = np.concatenate((history, history_array), axis=0)
history_array = history_array[:-1,:]
return history_array
# Trading functions
def make_trade(pair, amount, trade_type, key, secret, passphrase):
auth_client = cbpro.AuthenticatedClient(key, secret, passphrase)
if trade_type == 'buy':
response = auth_client.buy(order_type='market', product_id=pair, funds=amount)
if trade_type == 'sell':
response = auth_client.sell(order_type='market', product_id=pair, size=amount)
return response
def check_order_status(response, key, secret, passphrase):
auth_client = cbpro.AuthenticatedClient(key, secret, passphrase)
order_id = response['id']
output = True
if order_id is not None:
check = auth_client.get_order(order_id)
output = check['settled']
return output
def get_currency_balance(currency, key, secret, passphrase):
auth_client = cbpro.AuthenticatedClient(key, secret, passphrase)
response = auth_client.get_accounts()
for item in response:
if item['currency'] == currency:
output = float(item['available'])
return output
# strategy functions
def reframe_data(data):
# history = [time, low, high, open, close, volume]
data.rename(columns={'low':'low', 'high':'high', 'open':'Open', 'close':'Adj Close'}, inplace=True)
data = data[['Open', 'high', 'low', 'Adj Close']]
data = data.iloc[::-1]
data = data.values
data = pd.DataFrame(data, columns=['Open', 'high', 'low', 'Adj Close'])
return data
def eATR(data, lookback=10):
m = data.values
z = np.zeros((m.shape[0], 2))
m = np.concatenate((m, z), axis=1)
columns = ['Open', 'high', 'low', 'Adj Close', 'ATR', 'eATR']
# calculate ATR values
for i in range(1, len(m)):
atr = [m[i,1] - m[i,2], abs(m[i,1] - m[i-1,3]), abs(m[i-1,3] - m[i,2])]
m[i,4] = max(atr)
# calcualate exponential moving average
alpha = 2.0/float(lookback+1.0)
sma = sum(m[:lookback,4]) / float(lookback)
m[lookback,5] = sma
for i in range(1,len(m)-lookback):
m[i+lookback,5] = m[i+lookback,4]*alpha + m[i-1+lookback,5]*(1.0-alpha)
out = pd.DataFrame(m, columns=columns, index=data.index)
return out
def strategize(data, strategy={'buy':1.0, 'risk':1.0}, chandelier=False):
m = data.values
z = np.zeros((m.shape[0], 2))
m = np.concatenate((m, z), axis=1)
columns = ['Open', 'high', 'low', 'Adj Close', 'ATR', 'eATR', 'buy_point', 'sell_point']
for i in range(1, len(m)):
if (m[i,3] > (m[i-1,3] + strategy['buy']*m[i-1,5])) and (m[i-1,5]>0):
m[i,6] = 1
if chandelier:
if (m[i,3] < (m[i-1,1] - strategy['risk']*m[i-1,5])) and (m[i-1,5]>0):
m[i,7] = 1
else:
if (m[i,3] < (m[i-1,3] - strategy['risk']*m[i-1,5])) and (m[i-1,5]>0):
m[i,7] = 1
out = pd.DataFrame(m, columns=columns, index=data.index)
return out
def evaluate(data, risk_factor=1.0, chandelier=False):
m = data.values
profits = []
risk_rewards = []
winning = 0
all_trades = 0
j = 0
j_start = 1
first_buy = []
for i in range(1,len(m)-1):
if m[i,6] == 1:
buy = m[i,3]
if len(first_buy) == 0:
first_buy.append(buy)
if j_start < i:
j_start = i+1
else:
j_start = j
for j in range(j_start,len(m)):
if m[j,7] == 1:
sell = m[j,3]
all_trades += 1
profit = sell-buy
profits.append(profit)
if chandelier:
stop = m[i-1,1] - risk_factor*m[i,5]
else:
stop = m[i-1,3] - risk_factor*m[i,5]
risk_reward = profit / (buy - stop)
risk_rewards.append(risk_reward)
if profit > 0:
winning += 1
break
if len(profits) != 0:
expected = np.average(np.array(profits))
total_profit = sum(profits)
ROI = round(total_profit / first_buy[0],2)
else:
expected = 0.0
total_profit = 0.0
ROI = 0.0
total_profit = sum(profits)
profits = np.array(profits)
equity_curve = profits.cumsum()
if all_trades != 0:
hit_ratio = round(float(winning) / float(all_trades), 2)
else:
hit_ratio = 0.0
gross_profits = [k for k in profits if k > 0]
gross_losses = [abs(k) for k in profits if k < 0]
if sum(gross_losses) != 0.0:
profit_factor = round(sum(gross_profits) / sum(gross_losses), 2)
else:
profit_factor = np.nan
if len(risk_rewards) != 0:
risk_reward = np.average(np.array(risk_rewards))
else:
risk_reward = 0.0
output = {'hit_ratio':round(hit_ratio,2), 'total_trades':all_trades, 'expected':round(expected,2), 'total_profit':round(total_profit,2), 'ROI':ROI, 'profit_factor':round(profit_factor,2), 'risk_ratio':round(risk_reward,2), 'equity_curve':equity_curve}
return output
def simulate_strategies(data, buy_range = (1.0, 4.0, 0.25), risk_range=(1.0, 4.0, 0.25), chandelier=False):
buy_i = (buy_range[1] - buy_range[0])/buy_range[2]
buy_test = [buy_range[0] + float(i)*buy_range[2] for i in range(int(buy_i)+1)]
risk_i = (risk_range[1] - risk_range[0])/risk_range[2]
risk_test = [risk_range[0] + float(i)*risk_range[2] for i in range(int(risk_i)+1)]
strategies = []
for i in buy_test:
for j in risk_test:
s = {'buy':i, 'risk':j}
strategies.append(s)
for i in range(len(strategies)):
strategy = strategies[i]
eatr = eATR(data)
strat = strategize(eatr, strategy=strategy, chandelier=chandelier)
sim = evaluate(strat, risk_factor=strategy['risk'], chandelier=chandelier)
strategy.update(sim)
return strategies
def find_optimal_strategy(strategies):
previous_number_to_beat = 0.0
best_strategy = {'buy':1.0,'risk':1.0}
for strategy in strategies:
profit = strategy['total_profit']
if profit > previous_number_to_beat:
best_strategy = strategy
previous_number_to_beat = profit
return best_strategy
def optimize_strategy(data, buy_range = (1.0, 4.0, 0.25), risk_range=(1.0, 4.0, 0.25), chandelier=False):
strategies = simulate_strategies(data, buy_range = (1.0, 4.0, 0.25), risk_range=(1.0, 4.0, 0.25), chandelier=chandelier)
best_strategy = find_optimal_strategy(strategies)
return best_strategy
def iterate_signal(history_array, strategy, pair='BTC-USD', granularity=900, chandelier=False):
history = get_latest(pair=pair, granularity=granularity)
history_array = new_history(history_array, history)
history_pd = pd.DataFrame(history_array, columns=['time', 'low', 'high', 'open', 'close', 'volume'])
history_pd = reframe_data(history_pd)
history_pd = eATR(history_pd, lookback=10)
history_pd = strategize(history_pd, strategy=strategy, chandelier=chandelier)
end_point = len(history_pd) - 1
buy_point, sell_point = history_pd['buy_point'][end_point], history_pd['sell_point'][end_point]
if buy_point == 1:
buy_point = True
else:
buy_point = False
if sell_point == 1:
sell_point = True
else:
sell_point = False
return history_array, buy_point, sell_point
# MAIN FUNCTION
def main(API_KEY, pair='BTC-USD', granularity=900, duration=7*24*60*60, cash_buffer=0.1, reframe_threshold=48.0, continuous=False, chandelier=False):
key, secret, passphrase = API_KEY['key'], API_KEY['secret'], API_KEY['passphrase']
print('Initializing optimal trading strategy...')
# Get initial optimal strategy
history_pd, history_array = get_historic_data(pair=pair, granularity=granularity)
reframed = reframe_data(history_pd)
best_strategy = optimize_strategy(reframed, buy_range = (1.0, 4.0, 0.25), risk_range=(1.0, 4.0, 0.25), chandelier=False)
# Initializing timestamp
running = True
total_cycles = int(duration/granularity)
cycle = 0
total_hours = duration/3600
t = 0
hour = 1.0
response = {'id':None}
while running:
# Timecheck and reoptimization check
cycle += 1
if cycle >= total_cycles:
if not continuous:
print('{}: Duration exceeded.'.format(str(round(t))))
t += 1
running = False
else:
running = True
elapsed_hours = (cycle/total_cycles)*total_hours
if (elapsed_hours - hour) >= reframe_threshold:
print('{}: Reoptimizing trading strategy...'.format(str(t)))
t += 1
hour = hour + 1.0
history_pd, history_array = get_historic_data(pair=pair, granularity=granularity)
reframed = reframe_data(history_pd)
best_strategy = optimize_strategy(reframed, buy_range = (1.0, 4.0, 0.25), risk_range=(1.0, 4.0, 0.25), chandelier=False)
# Check crypto status
output = get_product_data(pair)
iteration = 0
while output['status'] != 'online':
print('{}: Crypto status error. Waiting...'.format(str(round(t))))
t += 1
print('Waiting for {} seconds...'.format(str(granularity)))
time.sleep(granularity)
cycle += 1
history_array, buy_point, sell_point = iterate_signal(history_array, best_strategy, pair=pair, granularity=granularity, chandelier=chandelier)
output = get_product_data(pair)
iteration += 1
if iteration == 10:
print('{}: Crypto availability timeout...try again later.'.format(str(round(t))))
t += 1
running = False
continue
# Iterate price array
history_array, buy_point, sell_point = iterate_signal(history_array, best_strategy, pair=pair, granularity=granularity, chandelier=chandelier)
if sell_point:
balance = get_currency_balance('BTC', key, secret, passphrase)
if balance > float(output['base_min_size']):
response = make_trade(pair, balance, 'sell', key, secret, passphrase)
print('{}: Sold {} crypto.'.format(str(t), str(balance)))
t += 1
else:
print('{}: No crypto to sell.'.format(str(t)))
t += 1
elif buy_point:
balance = get_currency_balance('USD', key, secret, passphrase)
if balance > 6.0: # Since the minimum buy amount is subject to change in the future this is a hotfix, and could be better solved by doing base_min_size * current_BTC_price
tender = round((1.0-cash_buffer)*balance,2)
response = make_trade(pair, tender, 'buy', key, secret, passphrase)
print('{}: Purchased BTC for ${}.'.format(str(t), str(round(tender,2))))
t += 1
else:
print('{}: Not enough fiat to buy.'.format(str(t)))
t += 1
else:
print('{}: No transaction point this iteration.'.format(str(t)))
t += 1
print('Waiting for {} seconds...'.format(str(granularity)))
time.sleep(granularity)
cycle += 1
history_array, buy_point, sell_point = iterate_signal(history_array, best_strategy, pair=pair, granularity=granularity, chandelier=chandelier)
# Check transaction status
cleared = check_order_status(response, key, secret, passphrase)
while cleared == False:
print('{}: Still waiting for transaction to settle...'.format(str(t)))
t += 1
print('Waiting for {} seconds...'.format(str(granularity)))
time.sleep(granularity)
cycle += 1
history_array, buy_point, sell_point = iterate_signal(history_array, best_strategy, pair=pair, granularity=granularity, chandelier=chandelier)
cleared = check_order_status(response, key, secret, passphrase)
continue
running = True
continue
print('{}: Session terminated.'.format(str(t)))