forked from gpu-mode/lectures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultistream-reduce.cu
118 lines (98 loc) · 3.35 KB
/
multistream-reduce.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <iostream>
#include <cuda.h>
#define BLOCK_DIM 1024
#define COARSE_FACTOR 2
#define NUM_DEVICES 2
__global__ void CoarsenedReduction(float* input, float* output, int size) {
__shared__ float input_s[BLOCK_DIM];
unsigned int i = blockIdx.x * blockDim.x * COARSE_FACTOR + threadIdx.x;
unsigned int t = threadIdx.x;
float sum = 0.0f;
// Reduce within a thread
for (unsigned int tile = 0; tile < COARSE_FACTOR; ++tile) {
unsigned int index = i + tile * blockDim.x;
if (index < size) {
sum += input[index];
}
}
input_s[t] = sum;
__syncthreads();
// Reduce within a block
for (unsigned int stride = blockDim.x / 2; stride > 0; stride >>= 1) {
if (t < stride) {
input_s[t] += input_s[t + stride];
}
__syncthreads();
}
// Reduce over blocks
if (t == 0) {
atomicAdd(output, input_s[0]);
}
}
int main() {
const int size = 10000;
const int bytes = size * sizeof(float);
// Allocate memory for input and output on host
float* h_input = new float[size];
float* h_output = new float;
// Initialize input data on host
for (int i = 0; i < size; i++) {
h_input[i] = 1.0f; // Example: Initialize all elements to 1
}
// Create CUDA streams for pipelining
cudaStream_t streams[NUM_DEVICES];
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaSetDevice(i);
cudaStreamCreate(&streams[i]);
}
// Allocate memory for input and output on each device
float* d_input[NUM_DEVICES];
float* d_output[NUM_DEVICES];
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaSetDevice(i);
cudaMalloc(&d_input[i], bytes);
cudaMalloc(&d_output[i], sizeof(float));
cudaMemset(d_output[i], 0, sizeof(float)); // Initialize output to 0
}
// Copy data from host to each device
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaSetDevice(i);
cudaMemcpyAsync(d_input[i], h_input, bytes, cudaMemcpyHostToDevice, streams[i]);
}
// Launch the kernel with coarsening on each device
int numBlocks = (size + BLOCK_DIM * COARSE_FACTOR - 1) / (BLOCK_DIM * COARSE_FACTOR);
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaSetDevice(i);
CoarsenedReduction<<<numBlocks, BLOCK_DIM, 0, streams[i]>>>(d_input[i], d_output[i], size);
}
// Copy results back to host from each device
float* d_output_host[NUM_DEVICES];
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaMallocHost(&d_output_host[i], sizeof(float));
cudaSetDevice(i);
cudaMemcpyAsync(d_output_host[i], d_output[i], sizeof(float), cudaMemcpyDeviceToHost, streams[i]);
}
// Wait for all streams to complete
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaSetDevice(i);
cudaStreamSynchronize(streams[i]);
}
// Sum the results from each device on the host
float final_sum = 0.0f;
for (int i = 0; i < NUM_DEVICES; ++i) {
final_sum += *d_output_host[i];
}
// Print the result
std::cout << "Sum is " << final_sum << std::endl;
// Cleanup
delete[] h_input;
delete h_output;
for (int i = 0; i < NUM_DEVICES; ++i) {
cudaSetDevice(i);
cudaFree(d_input[i]);
cudaFree(d_output[i]);
cudaFreeHost(d_output_host[i]);
cudaStreamDestroy(streams[i]);
}
return 0;
}