-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEZDock_OE.py
1101 lines (920 loc) · 50 KB
/
EZDock_OE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
# giving permissions to run vina and ADFR scripts, change the directories of vina as required
os.chmod('./vina/vina_1.2.5_linux_x86_64', 0o755) # giving permissions to run vina scripts
os.chmod('./vina/vina_split_1.2.5_linux_x86_64', 0o755) # giving permissions to run vina scripts
os.chmod('./extract_ligand.sh', 0o755) # giving permissions to run extract_ligand.sh
os.chmod('./ADFRsuite/ADFRsuite_x86_64Linux_1.0', 0o755) # giving permissions to run ADFRsuite
# make sure to set the OE_LICENSE environment variable, the full path should be included, or else openeye will kill your kernel!
license_path = '/home/s1732775/oe_license.txt'
os.environ['OE_LICENSE'] = license_path
os.chmod(license_path, 0o755)
import os
from Bio.PDB import PDBList, PDBParser, Select, PDBIO
from subprocess import Popen, PIPE
import re
import logging
from pathlib import Path
import contextlib
import subprocess
from rdkit import Chem
from rdkit.Chem import rdMolTransforms as rdmt
import MDAnalysis as mda
import numpy as np
import pandas as pd
from tqdm import tqdm
from asapdiscovery.data.backend.openeye import (
oechem,
oedocking,
oegrid,
oespruce,
openeye_perceive_residues,
)
from asapdiscovery.modeling.schema import MoleculeComponent, MoleculeFilter
from asapdiscovery.modeling.modeling import split_openeye_mol, make_design_unit
import matplotlib.pyplot as plt
import seaborn as sns
import openeye.oechem as oechem
from pdbfixer import PDBFixer
from openmm.app import PDBFile
from rdkit import Chem
from rdkit.Chem import SDWriter
from ase import Atoms
from ase.io.sdf import read_sdf
from ase.io import read
from iodata import load_one
from iodata.utils import angstrom
from openmm.app.element import zinc, iron, calcium # Import other metals as needed
import openmm.unit as unit
# Set up the working directory
cwd = os.getcwd()
# Function to change directories
@contextlib.contextmanager
def set_directory(dirname: os.PathLike, mkdir: bool = False):
pwd = os.getcwd()
path = Path(dirname).resolve()
if mkdir:
path.mkdir(exist_ok=True, parents=True)
os.chdir(path)
yield path
os.chdir(pwd)
# Function to run shell commands
def run_command(cmd, raise_error=True, input=None, timeout=None, **kwargs):
"""Run a shell command and handle possible errors."""
# Popen is used to run the command
sub = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, **kwargs)
if input is not None:
sub.stdin.write(bytes(input, encoding='utf-8'))
try:
out, err = sub.communicate(timeout=timeout)
return_code = sub.poll()
# if the command times out, kill the process
except subprocess.TimeoutExpired:
sub.kill()
print(f"Command {cmd} timeout after {timeout} seconds")
return 999, "", "" # 999 is a special return code for timeout
out = out.decode('utf-8')
err = err.decode('utf-8')
if raise_error and return_code != 0:
raise CommandExecuteError(f"Command {cmd} failed: \n{err}")
return return_code, out, err
# Exception for command execution errors
class CommandExecuteError(Exception):
def __init__(self, msg):
self.msg = msg
def __str__(self):
return self.msg
# from https://github.com/choderalab/perses/blob/main/examples/moonshot-mainseries/00-prep-receptor.py#L19-L35
def read_pdb_file(pdb_file):
print(f'Reading receptor from {pdb_file}...')
from openeye import oechem
ifs = oechem.oemolistream()
#ifs.SetFlavor(oechem.OEFormat_PDB, oechem.OEIFlavor_PDB_Default | oechem.OEIFlavor_PDB_DATA | oechem.OEIFlavor_PDB_ALTLOC) # Causes extra protons on VAL73 for x1425
ifs.SetFlavor(oechem.OEFormat_PDB, oechem.OEIFlavor_PDB_Default | oechem.OEIFlavor_PDB_DATA )
if not ifs.open(pdb_file):
oechem.OEThrow.Fatal("Unable to open %s for reading." % pdb_file)
mol = oechem.OEGraphMol()
if not oechem.OEReadMolecule(ifs, mol):
oechem.OEThrow.Fatal("Unable to read molecule from %s." % pdb_file)
ifs.close()
return (mol)
# script from extract_ligand_oedu.py: https://docs.eyesopen.com/toolkits/python/oechemtk/oebio_examples/oebio_example_extract_ligand.html#section-example-oebio-extract-ligand
def ExtractLigandFromDU(du, ofs):
# @ <SNIPPET-ExtractLigandFromDesignUnit>
lig = oechem.OEGraphMol()
if not du.GetLigand(lig):
oechem.OEThrow.Fatal("Error: Could not extract ligand from the OEDesignUnit.")
oechem.OEWriteMolecule(ofs,lig)
# @ </SNIPPET-ExtractLigandFromDesignUnit>
ofs.close()
# Function to read a molecular complex/ligand/protein from a file
def oe_read_molecule(filename):
ifs = oechem.oemolistream()
if not ifs.open(filename):
oechem.OEThrow.Fatal("Unable to open file %s" % filename)
mol = oechem.OEGraphMol()
oechem.OEReadMolecule(ifs, mol)
ifs.close()
return mol
def oe_split_complex(input_filename, ligand_output_filename, protein_output_filename=None):
# Read the complex
complex_molecule = oe_read_molecule(input_filename)
# Split the complex
protein = oechem.OEGraphMol()
ligand = oechem.OEGraphMol()
water = oechem.OEGraphMol()
other = oechem.OEGraphMol()
# Split the complex
oechem.OESplitMolComplex(ligand, protein, water, other, complex_molecule)
# Write the components to files
oechem.OEWriteMolecule(oechem.oemolostream(ligand_output_filename), ligand)
# we dont need the water and other components
# oechem.OEWriteMolecule(oechem.oemolostream(protein_output_filename), protein)
# oechem.OEWriteMolecule(oechem.oemolostream(output_basename + "_water.pdb"), water)
# oechem.OEWriteMolecule(oechem.oemolostream(output_basename + "_other.pdb"), other)
# Example usage
# input_filename = "./Mpro-x0072_0.pdb" # Replace with your file path
# ligand_output_filename = "./Mpro-x0072_0_ligand.pdb"
# protein_output_filename = "./Mpro-x0072_0_protein.pdb"
# oe_split_complex(input_filename, ligand_output_filename, protein_output_filename)
# using Biopython to extract the receptor
class ReceptorSelect(Select):
'''This class is used to select only the receptor residues from a PDB file, by excluding any HETATM and any water.'''
def __init__(self, preserve_water=False, preserve_metal=False):
self.preserve_water = preserve_water
# List of common heavy metal ions in protein structures
self.preserve_metal = preserve_metal
# I deleted the heavy metal ions as they are not a valid AutoDock type! Be cautious here!
self.heavy_metal_ions = ['ZN', 'FE', 'MG', 'CA', 'MN', 'CO', 'CU', 'NI', 'MO', 'W','YB', 'K', 'NA']
def accept_residue(self, residue):
# Exclude water molecules, assumed to have residue name 'HOH' or 'WAT'
#TODO: What if there's water in the binding site?
resname = residue.get_resname()
# print(f"Processing residue: {resname}")
if resname in ['HOH', 'WAT']:
if self.preserve_water:
# print("Preserving water molecule")
return True
else:
# print("Excluding water molecule")
return False
# Include heavy metal ions
if resname in self.heavy_metal_ions:
if self.preserve_metal:
# print("Preserving metal ion")
return True
else:
# print("Excluding metal ion")
return False
# Check if any atom in the residue is from an ATOM record
for atom in residue:
'''in biopython, atom.get_full_id()[3] is accessing the fourth element of the full ID. This element represents the atom name, atom.get_full_id()[3][0] is accessing the first character of the atom name. This character represents the element symbol of the atom. The condition atom.get_full_id()[3][0] == ' ' checks whether the first character of the atom name is a space. If it is a space, then the atom is from an ATOM record, otherwise it is from a HETATM record.'''
if atom.get_full_id()[3][0] == ' ':
return True
# print("Excluding residue")
return False
def download_pdb_file(pdb_id):
"""Download PDB file using PDB ID."""
pdbl = PDBList()
filename = pdbl.retrieve_pdb_file(pdb_id, file_format='pdb', pdir='.', overwrite=True)
return filename
def get_structure(filename):
"""Parse the structure from a PDB file."""
parser = PDBParser()
structure = parser.get_structure('structure', filename)
return structure
def save_receptor(structure, receptor_file, preserve_water=False, preserve_metal=False):
"""Save the receptor part of the PDB file."""
io = PDBIO()
io.set_structure(structure)
io.save(receptor_file, ReceptorSelect(preserve_water=preserve_water,
preserve_metal = preserve_metal))
# Example usage:
# pdb_id = '1abc'
# filename = download_pdb_file(pdb_id)
# structure = get_structure(filename)
# save_receptor(structure, 'receptor.pdb', preserve_water=True)
def fix_receptor_file(input_receptor_file):
'''This function must be used for complexes without crystal structurers on PDB, as there could be places where things should be fixed before docking. This must be done or else the docking software might report errors. '''
#TODO: Fix this function - it unwantedly removes metal ions and water from the structure
# Initialize the PDBFixer with the input file
fixer = PDBFixer(filename=input_receptor_file)
# Find and fix missing residues, atoms, and hydrogens
fixer.findMissingResidues()
fixer.findMissingAtoms()
fixer.addMissingAtoms()
fixer.addMissingHydrogens(7.0)
# Define the output file name
output_receptor_file = input_receptor_file.replace('.pdb', '_fixed.pdb')
# Save the fixed receptor file
with open(output_receptor_file, 'w') as output_file:
PDBFile.writeFile(fixer.topology, fixer.positions, output_file)
print(f"Fixed receptor file saved as: {output_receptor_file}")
return output_receptor_file
# def fix_receptor_file(input_receptor_file):
# '''This function must be used for complexes without crystal structures on PDB, as there could be places where things should be fixed before docking. This must be done or else the docking software might report errors.'''
# # Initialize the PDBFixer with the input file
# fixer = PDBFixer(filename=input_receptor_file)
# # Preserve metal ions
# metals = ['ZN', 'FE','CA'] # Add other metal symbols as needed
# metal_atoms = []
# for chain in fixer.topology.chains():
# for residue in chain.residues():
# if residue.name in metals:
# for atom in residue.atoms():
# metal_atoms.append((atom, atom.element, atom.name, residue.id, chain.id))
# # Find and fix missing residues, atoms, and hydrogens
# fixer.findMissingResidues()
# fixer.findMissingAtoms()
# fixer.addMissingAtoms()
# fixer.addMissingHydrogens(7.0)
# # Add metal ions back
# for atom, element, name, residue_id, chain_id in metal_atoms:
# chain = next(chain for chain in fixer.topology.chains() if chain.id == chain_id)
# residue = chain.residue(residue_id)
# if not any(a.name == name for a in residue.atoms()):
# new_atom = residue.addAtom(name, element)
# fixer.positions.append((atom.element.mass*unit.dalton).value_in_unit(unit.angstrom))
# # Define the output file name
# output_receptor_file = input_receptor_file.replace('.pdb', '_fixed.pdb')
# # Save the fixed receptor file
# with open(output_receptor_file, 'w') as output_file:
# PDBFile.writeFile(fixer.topology, fixer.positions, output_file)
# print(f"Fixed receptor file saved as: {output_receptor_file}")
# return output_receptor_file
# Example usage:
# fixed_file = fix_receptor_file('Mpro-x0072_0_receptor.pdb')
def rename_file(old_filename, new_filename):
"""Rename the downloaded file to a standard name."""
if os.path.exists(old_filename) and not os.path.exists(new_filename):
os.rename(old_filename, new_filename)
return new_filename
def extract_ligand(filename, ligand_file):
"""Extract the ligand from the complex."""
print(f'Extracting ligand from {filename}...')
complex = read_pdb_file(filename)
success, du = make_design_unit(complex)
if success:
oeoutfile = oechem.oemolostream(ligand_file)
ExtractLigandFromDU(du, oeoutfile)
else:
print(f'Failed to extract ligand from {filename} using the OpenEye Toolkit,'
'trying a different script written using OESplitMolComplex...')
# Extract ligand using shell script
complex_id = filename.rsplit('.')[0]
# script written using OESplitMolComplex:
oe_split_complex(input_filename = filename,
ligand_output_filename = f"{ligand_file}")
# this is my shell script - not guaranteed to work for everything and hence not used!
# run_command(f'./extract_ligand.sh {complex_id}')
def pdb_to_prot_lig(pdb_id, filename, preserve_water=False, preserve_metal=False):
"""Main function to handle the splitting of protein and ligand."""
structure = get_structure(filename)
# naming the output files
receptor_file = f"{pdb_id}_receptor.pdb"
ligand_file = f"{pdb_id}_ligand.pdb"
complex_file = rename_file(filename, f"{pdb_id}.pdb")
# ---old codes (uses Biopython for receptor extraction, and ASAP for ligand extraction - slower)---
save_receptor(structure, receptor_file, preserve_water, preserve_metal)
# receptor_file = fix_receptor_file(receptor_file)
extract_ligand(complex_file, ligand_file)
# ---new codes (uses OE for ligand and receptor extraction)---
# split the complex into protein and ligand
# oe_split_complex(input_filename = filename, ligand_output_filename = ligand_file, protein_output_filename = receptor_file)
print(f'The complex file has been saved as {complex_file}')
print(f'The receptor file has been saved as {receptor_file}')
print(f'The ligand file has been saved as {ligand_file}')
return complex_file, receptor_file, ligand_file
# Example usage:
# filename = download_pdb_file(pdb_id) # if starting from a PDB ID
# receptor_file, ligand_file = pdb_to_prot_lig(pdb_id, filename)
class DockingPrepper:
'''This class is used to prepare the ligand and protein files for docking using AutoDock Vina. It uses the ADFRsuite to convert the ligand and protein files to pdbqt format.
# Example usage:
prep = DockingPrepper(folder='path/to/folder', pdb_id = 'pdb_id.pdb', lig_file='ligand.pdb', prot_file='protein.pdb')
# ---- AutoDock Vina Preparation ----
prep.vina_process()
# Alternatively...
# ---- OpenEye Preparation ----
prep.oe_process()
'''
def __init__(self, folder, pdb_id, lig_file, prot_file, lig_out_name=None, prot_out_name=None, add_h=True, preserve_water=False, preserve_metal=False):
self.folder = folder
self.pdb_id = pdb_id
self.lig_file = lig_file
self.prot_file = prot_file
self.lig_out_name = lig_out_name or f"{lig_file.split('.')[0]}.pdbqt"
self.prot_out_name = prot_out_name or f"{prot_file.split('.')[0]}.pdbqt"
self.add_h = add_h
self.preserve_water = preserve_water
self.preserve_metal = preserve_metal #TODO/WARMING: This is not implemented yet!
# ----------------- AutoDock Vina Preparation -----------------
def vina_prepare_ligand(self):
"""Prepare the ligand file for Vina."""
if self.add_h:
cmd = f'./ADFRsuite/ADFRsuite_x86_64Linux_1.0/bin/prepare_ligand -l {self.lig_file} -o {self.lig_out_name} -A hydrogens'
else:
cmd = f'./ADFRsuite/ADFRsuite_x86_64Linux_1.0/bin/prepare_ligand -l {self.lig_file} -o {self.lig_out_name}'
self._run_command(cmd, f'The ligand file has been saved as {self.lig_out_name}')
def vina_prepare_protein(self):
"""Prepare the protein file for Vina."""
if self.preserve_water:
cmd = f'./ADFRsuite/ADFRsuite_x86_64Linux_1.0/bin/prepare_receptor -r {self.prot_file} -o {self.prot_out_name} -A checkhydrogens -U nphs_lps_nonstdres'
'''
[-U] cleanup type:
'nphs': merge charges and remove non-polar hydrogens
'lps': merge charges and remove lone pairs
'waters': remove water residues
'nonstdres': remove chains composed entirely of residues of
types other than the standard 20 amino acids
'deleteAltB': remove XX@B atoms and rename XX@A atoms->XX
(default is 'nphs_lps_waters_nonstdres')
'''
else:
cmd = f'./ADFRsuite/ADFRsuite_x86_64Linux_1.0/bin/prepare_receptor -r {self.prot_file} -o {self.prot_out_name} -A checkhydrogens'
self._run_command(cmd, f'The protein file {self.prot_file} has been converted to pdbqt format and saved in {self.prot_out_name}')
def _run_command(self, cmd, success_message):
"""Run a shell command and handle possible errors."""
try:
subprocess.run(cmd, shell=True, check=True, timeout=999)
print(success_message)
except subprocess.CalledProcessError as e:
print(f"Error occurred: {e.output}")
raise e
except subprocess.TimeoutExpired:
print(f"Command '{cmd}' timed out.")
raise e
def vina_process(self):
"""Process the ligand and protein files."""
with set_directory(self.folder):
# if the lig_file and prot_file are not in pdb format, convert them to pdb format using obabel
if self.lig_file.split('.')[-1] != 'pdb':
lig_name = self.lig_file.split('.')[0]
cmd = f'obabel {self.lig_file} -O {lig_name}.pdb'
self._run_command(cmd, f'The ligand file has been converted to {lig_name}.pdb')
self.lig_file = f'{lig_name}.pdb'
if self.prot_file.split('.')[-1] != 'pdb':
prot_name = self.prot_file.split('.')[0]
cmd = f'obabel {self.prot_file} -O {prot_name}.pdb'
self._run_command(cmd, f'The protein file has been converted to {prot_name}.pdb')
self.prot_file = f'{prot_name}.pdb'
self.vina_prepare_ligand()
self.vina_prepare_protein()
# ----------------- OpenEye Preparation -----------------
def oe_make_design_unit(self):
'''
This function makes design units from a protein-ligand complex.
Input: input_file - the protein-ligand complex file
Saved to file: {input_file_basename}_DU_{i}.oedu
Output: output_files - a list of the design unit files
'''
input_file = f"{self.pdb_id}.pdb"
os.system(f"python ./OpenEye/make_design_units.py {input_file}")
# this is the output pattern for the design unit files
output_pattern = os.path.basename(input_file)[:-4] + "_DU_{}.oedu"
# List the files in the current directory and filter for the expected output pattern
output_files = []
i = 0
while True:
output_file = output_pattern.format(i)
if os.path.exists(output_file):
output_files.append(output_file)
i += 1
else:
break
# output_files now contains the names of the output files
print(f"Design unit was successfully made for {input_file}, output is saved to {output_files}.")
return output_files
def oe_make_receptor(self, input_file):
oe_output_files = []
for ifile in input_file:
output_basename = os.path.basename(ifile)[:-5]
os.system(f"python ./OpenEye/MakeReceptor.py -in {ifile} -out {output_basename}_receptor.oedu") # this will output {ifile}_receptor.oedu
oe_output_files.append(f"{output_basename}_receptor.oedu")
print(f'The receptor design unit file has been saved as {output_basename}_receptor.oedu')
return oe_output_files
# Example usage:
# input_file = "6EQ2.pdb"
# complex_DU = oe_make_design_unit(input_file) # this will output ['6EQ2_DU_0.oedu']
# receptor_DU = oe_make_receptor(complex_DU) # this will output ['6EQ2_DU_0_receptor.oedu']
def oe_process(self):
'''Process the ligand and protein files using OpenEye.'''
print(f'Preparing the ligand and protein files using OpenEye Toolkits...')
with set_directory(self.folder):
complex_DU = self.oe_make_design_unit()
oe_output_files = self.oe_make_receptor(input_file=complex_DU)
# self.oe_output_files = [f"{self.pdb_id}_DU_0_receptor.oedu"]
return oe_output_files
def get_COM(file):
if file.endswith('mol2') or file.endswith('xyz'):
mol = load_one(file)
ase_mol = Atoms(numbers=mol.atnums, positions=mol.atcoords / angstrom)
elif file.endswith('sdf'):
ase_mol = read_sdf(file)
elif file.endswith('pdb'):
ase_mol = read(file)
else:
raise NotImplementedError(f"file extension not supported for {file}")
return ase_mol.get_center_of_mass()
def write_config_vina(lig_pdbqt,prot_pdbqt,center, config_fp = "config.txt", weights=None, boxsize=50, exhaustiveness=32, num_modes=1, energy_range=30, **kwargs):
'''
Write the config file for AutoDock Vina docking
:param exhaustiveness: int, the exhaustiveness of the docking
:param num_modes: int, the number of modes (conformations) to be generated
:param energy_range: int, the energy range of the docking
'''
lines = ["receptor = {}".format(prot_pdbqt),
"ligand = {}".format(lig_pdbqt),
"scoring = vina",
"",
"center_x = {}".format(center[0]),
"center_y = {}".format(center[1]),
"center_z = {}".format(center[2]),
"",
"size_x = {}".format(boxsize),
"size_y = {}".format(boxsize),
"size_z = {}".format(boxsize),
"",
# "exhaustiveness = {}".format(exhaustiveness),
# "num_modes = {}".format(num_modes),
# "energy_range = {}".format(energy_range),
]
if weights is not None:
assert len(weights) == 6, "Autodock vina needs 6 weights"
# --weight_gauss1 1 --weight_gauss2 0 --weight_repulsion 0 --weight_hydrophobic 0 --weight_hydrogen 0 --weight_rot 0"
lines.extend([
f"weight_gauss1 = {weights[0]}",
f"weight_gauss2 = {weights[1]}",
f"weight_repulsion = {weights[2]}",
f"weight_hydrophobic = {weights[3]}",
f"weight_hydrogen = {weights[4]}",
f"weight_rot = {weights[5]}",
])
with open(config_fp, "w") as f:
f.write("\n".join(lines))
class DockingScorer:
'''This class is used to score the ligand using AutoDock Vina. It uses the prepared ligand and protein files to run Vina and extract the docking score.
Example usage:
scorer = DockingScorer(folder='path/to/folder', lig_file='ligand.pdbqt', prot_file='protein.pdbqt', save_out_file=True)
docking_score = scorer.vina_score_ligand()
print(f"Docking Score: {docking_score}")
'''
def __init__(self,
folder,
lig_file,
prot_file,
complex_file=None,
get_vina_poses=False,
weights=None,
save_out_file=True,
protein_sequence=None,
smiles=None,
exp_binding_affinity=None,
from_pdb=True,
csv_out_file='docking_data_playground_from_pdb.csv',
receptor_DU=None):
self.folder = folder
self.lig_file = lig_file
self.prot_file = prot_file
self.complex_file = complex_file
self.lig_name = os.path.splitext(lig_file)[0]
self.prot_name = os.path.splitext(prot_file)[0]
self.complex_name = os.path.splitext(complex_file)[0]
self.pdb_id = self.prot_name.split('_')[0]
self.get_vina_poses = get_vina_poses
self.weights = weights
self.save_out_file = save_out_file
#TODO: more work required here to extract the protein sequence, ligand SMILES string and exp dG value, from an online db (low priority)
self.protein_sequence = protein_sequence
self.smiles = smiles
self.exp_binding_affinity = exp_binding_affinity
self.from_pdb = from_pdb
self.csv_out_file = csv_out_file
self.receptor_DU = receptor_DU
def check_files(self):
'''Check and download the necessary files if needed'''
if not os.path.isfile(f"{self.folder}/{self.prot_name}.pdbqt") or not os.path.isfile(f"{self.folder}/{self.lig_name}.pdbqt"):
filename = download_pdb_file(self.pdb_id)
self.complex_file, self.prot_file, self.lig_file = pdb_to_prot_lig(self.pdb_id, filename)
#TODO: add a functionality to use Vina GPU instead (low priority)
# ----------------- AutoDock Vina Scoring -----------------
def run_vina(self):
'''Run Vina with the prepared files and return the output.'''
with set_directory(self.folder):
# extract a reference ligand from the protein-ligand complex
ref_ligand = f"{self.complex_name}_ref_ligand.pdb"
extract_ligand(self.complex_file, ref_ligand)
# get the COM from the reference ligand so we can define a docking grid
ligand_COM = get_COM(ref_ligand)
write_config_vina(f'{self.lig_name}.pdbqt', f'{self.prot_name}.pdbqt',ligand_COM,config_fp = f"{self.lig_name}_{self.prot_name}_config.txt", weights=None)
cmd = f"./vina/vina_1.2.5_linux_x86_64 --config {self.lig_name}_{self.prot_name}_config.txt --score_only" #TODO: make it so that this can also output poses
if self.get_vina_poses == True:
cmd = f"./vina/vina_1.2.5_linux_x86_64 --config {self.lig_name}_{self.prot_name}_config.txt"
try:
out, err = "", "" # Initialize out and err
code, out, err = run_command(cmd, timeout=100)
if code != 0:
raise CommandExecuteError(f"Command failed with return code {code}")
return out
except CommandExecuteError as e:
print(f"Error in {self.pdb_id}: {e}")
print("out: ", out)
print("err: ", err)
raise e
def extract_vina_score(self, out):
'''Extract the docking score from Vina output.'''
if not self.get_vina_poses:
strings = re.split('Estimated Free Energy of Binding :', out)
line = strings[1].split('\n')[0]
energy = float(line.strip().split()[0])
return energy
else:
# TODO: if get_vina_poses is True, return the output and the energy
energy = []
for line in out.split('\n'):
match = re.search(r'^\s*\d+\s+(-\d+\.\d+)', line)
if match:
energy.append(float(match.group(1)))
return min(energy) if energy else None
# ----------------- OpenEye Toolkits Scoring -----------------
def oe_clean_then_dock(self):
''' This function docks a ligand to a receptor using OpenEye's CleanThenDockMolecules.py script.
Input: lig_file - the ligand file to be docked
receptor_DU - the receptor file to dock the ligand to
Output: output_files - a list of the docked ligand files, which also contains the chemgauss4 score.'''
output_files = []
if self.receptor_DU is None:
print("No receptor design unit file provided. Please provide a receptor file to dock the ligand.")
raise ValueError("No receptor design unit file provided.")
for receptor_du in self.receptor_DU:
output_basename = f"{receptor_du.split('.')[0]}_{self.lig_name}"
os.system(f'python ./OpenEye/CleanThenDockMolecules.py -in {self.lig_file} -out {output_basename}_docked.sdf -receptor {receptor_du}') # output score is Chemgauss4, contained in the sdf file
output_files.append(f"{output_basename}_docked.sdf")
print(f'The docked ligand file has been saved as {output_files}')
return output_files
################## combined
# # TODO: modify this function to calculate and extract the other scores from the docked ligands
def extract_chemgauss4_scores(self, docked_ligand):
''' This function extracts the Chemgauss4 scores from the docked ligands using RDKit and falls back to regex if needed.'''
# Handle if docked_ligand is passed as a list
if isinstance(docked_ligand, list):
docked_ligand = docked_ligand[0]
chemgauss4_scores = []
try:
# Try using RDKit-based approach
supplier = Chem.SDMolSupplier(docked_ligand)
for mol in supplier:
if mol is None:
raise ValueError("Error: Invalid molecule found, try the regex-based approach.")
if mol.HasProp('Chemgauss4'):
energy = mol.GetProp('Chemgauss4')
energy = float(energy)
chemgauss4_scores.append(energy)
if energy is None or chemgauss4_scores is None:
raise ValueError("Energy or chemgauss4_scores is None")
except Exception as e:
print(f"RDKit approach failed: {e}, trying regex-based approach...")
# Fallback to regex-based approach
chemgauss4_pattern = re.compile(r'> <Chemgauss4>\s+(-?\d+\.\d+)')
try:
with open(docked_ligand, 'r') as file:
sdf_content = file.read()
matches = chemgauss4_pattern.findall(sdf_content)
chemgauss4_scores = [float(score) for score in matches]
except FileNotFoundError:
print(f"Error: The file {docked_ligand} was not found.")
except Exception as e:
print(f"An error occurred while extracting Chemgauss4 scores: {e}")
return chemgauss4_scores
# # Example usage
# docked_ligand = oe_clean_then_dock(ligand_file, receptor_DU) # this will output ['6EQ2_ligand_docked.sdf'], suppose ligand_file = '6EQ2_ligand.pdb'
# Extracting Chemgauss4 scores from the docked ligands
# scores = extract_chemgauss4_scores(docked_ligand)
# ----------------- Putting things together -----------------
# make the output into a pandas dataframe
# add pdb_id, protein sequence, ligand SMILES string, dG, exp_dG as a column in the dataframe
def extract_data_from_leakypdb(self, df):
'''Extract the protein sequence, ligand SMILES string, and experimental binding affinity from the specified dataframe (leakypdb_test.csv).'''
# # Read the DataFrame (must be done so that df is correctly recognised as a DataFrame, not a string.)
# df = pd.read_csv(df)
# Filter the DataFrame for the specific PDB ID
filtered_df = df[df['pdb_id'] == self.pdb_id]
# Check if the specific columns exist in the DataFrame
required_columns = ['pdb_id','smiles', 'protein_sequence', 'binding_affinity']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
return f"Missing columns in the data: {', '.join(missing_columns)}"
# Extract the needed information
result = filtered_df[required_columns]
return result
def save_output(self, out, energy):
'''Save the vina output to a file if required.'''
if self.save_out_file:
if self.from_pdb:
with open(f"{self.pdb_id}.out", 'w') as f:
# Convert list to string if 'out' is a list
if isinstance(out, list):
out = "\n".join(out)
f.write(out)
print(f"Output saved as {self.pdb_id}.out\n")
df = self.extract_data_from_leakypdb(leakypdb) # define the dataframe to extract data from
# add data to the dataframe: Assign the energy value to a new column 'computed_dG' for the filtered rows
df.loc[df['pdb_id'] == self.pdb_id, 'computed_dG'] = energy
updated_rows = df[df['pdb_id'] == self.pdb_id]
if not os.path.isfile(f'{self.csv_out_file}'):
updated_rows.to_csv(f'{self.csv_out_file}', index=False)
else: # else it exists so append without writing the header
updated_rows.to_csv(f'{self.csv_out_file}', mode='a', header=False, index=False)
print(f"Data saved to {self.csv_out_file}")
return updated_rows
else:
if isinstance(energy, list):
for i, e in enumerate(energy):
with open(f"{self.prot_name}_{self.lig_name}_{i}.out", 'w') as f:
# Convert list to string if 'out' is a list
if isinstance(out, list):
out = "\n".join(out)
f.write(out)
print(f"Output saved as {self.prot_name}_{self.lig_name}_{i}.out\n")
lig_name_with_index = f'{self.lig_name}_{i}'
df = pd.DataFrame({'ligand_name': [lig_name_with_index],
'protein_name': [self.prot_name],
'computed_dG': [e],
'error_message': [None]})
if not os.path.isfile(f'{self.csv_out_file}'):
df.to_csv(f'{self.csv_out_file}', index=False)
else: # else it exists so append without writing the header
df.to_csv(f'{self.csv_out_file}', mode='a', header=False, index=False)
print(f"Data saved to {self.csv_out_file}")
else:
with open(f"{self.prot_name}_{self.lig_name}.out", 'w') as f:
# Convert list to string if 'out' is a list
if isinstance(out, list):
out = "\n".join(out)
f.write(out)
print(f"Output saved as {self.prot_name}_{self.lig_name}.out\n")
df = pd.DataFrame({'ligand_name': [self.lig_name],
'protein_name': [self.prot_name],
'computed_dG': [energy],
'error_message': [None]})
if not os.path.isfile(f'{self.csv_out_file}'):
df.to_csv(f'{self.csv_out_file}', index=False)
else: # else it exists so append without writing the header
df.to_csv(f'{self.csv_out_file}', mode='a', header=False, index=False)
print(f"Data saved to {self.csv_out_file}")
return df
######################## FINAL FUNCTIONS ########################
def vina_score_ligand(self):
"""Main method to score the ligand using Vina."""
if self.from_pdb:
self.check_files()
try:
out = self.run_vina()
energy = self.extract_vina_score(out)
except Exception as e:
print(f"Error in {self.pdb_id}: {e}")
out = f"Error in {self.pdb_id}: {e}"
energy = None
raise e
print(f"{self.pdb_id}: Estimated Free Energy of Binding = {energy} kcal/mol")
self.save_output(out, energy)
return energy
def oe_score_ligand(self):
'''Main method to score the ligand using OpenEye Toolkits.'''
# if self.from_pdb:
# self.check_files()
try:
docked_ligand = self.oe_clean_then_dock()
# TODO: out should be the output on the commandline.... not the docked_ligand
out = docked_ligand
energies = []
if isinstance(docked_ligand, list) and len(docked_ligand) > 1:
for i, lig in enumerate(docked_ligand):
energy = self.extract_chemgauss4_scores(lig)
# debug line
# print('debug line:', energy)
if energy is not None:
self.save_output(out, energy)
if isinstance(energy, list):
for j, e in enumerate(energy):
print(f"Docked ligand {lig}, molecule {j+1}: Chemgauss4 score = {e:.2f}")
# self.save_output(out, e)
energies.append(e)
else:
print(f"Docked ligand {lig}, molecule {i+1}: Chemgauss4 score = {energy:.2f}")
# self.save_output(out, energy)
energies.append(energy)
else:
if isinstance(docked_ligand, list):
docked_ligand = docked_ligand[0]
energy = self.extract_chemgauss4_scores(docked_ligand)
if energy is not None:
self.save_output(out, energy)
if isinstance(energy, list):
for j, e in enumerate(energy):
print(f"Docked ligand {docked_ligand}, molecule {j+1}: Chemgauss4 score = {e:.2f}")
# self.save_output(out, e)
energies.append(e)
else:
print(f"Docked ligand {docked_ligand}, molecule {i+1}: Chemgauss4 score = {energy:.2f}")
# self.save_output(out, energy)
energies.append(energy)
else:
self.save_output(out, energy)
energies = None
raise ValueError(f"{self.pdb_id}: No valid energy value available.")
# debug line
# print(energies)
except Exception as e:
print(f"Error in {self.pdb_id}: {e}")
out = f"Error in {self.pdb_id}: {e}"
energies = None
print(f"{self.pdb_id}: No valid energy value available.")
# self.save_output(out, energies)
raise e
return energies
# download the PDB file using the PDB ID
# filename = download_pdb_file(pdb_id)
# # split the protein and ligand from the PDB file
# receptor_file, ligand_file = pdb_to_prot_lig(pdb_id, filename)
# this is for when lig_files and prot_files are lists...
# for lig, prot in tqdm(zip(lig_files, prot_files)):
# vina_process_lig_prot(lig, prot)
def vina_process_lig_prot(lig_file, prot_file, complex_file, preserve_water=False, preserve_metal=False, csv_out_file='vina_docking_data.csv'):
'''Final function to process each protein and ligand pair, prepare them for docking, score the ligand and save the output files.
Both lig_file, prot_file and complex_file must be strings, not lists. If you want to process multiple ligands and proteins (i.e. LISTS), you should use this function in the following manner:
for lig, prot in tqdm(zip(lig_files, prot_files)):
vina_process_lig_prot(lig, prot, complex_file)
...
The reference complex file needs to be a protein-ligand complex, with a docked ligand in the binding site of the protein of interest.
'''
# TODO: handling lists..?
if isinstance(lig_file, list) or isinstance(prot_file, list) or isinstance(complex_file, list):
raise ValueError("lig_file and prot_file must be strings, not lists. If you are trying to process multiple ligands and proteins, you should use this function in a loop.")
# check if any of the input is none
if lig_file is None or prot_file is None or complex_file is None:
raise ValueError("lig_file, prot_file and complex_file must not be None. You risk deleting everything in your current directory if any of these is None!")
lig_name = os.path.splitext(lig_file)[0]
prot_name = os.path.splitext(prot_file)[0]
complex_name = os.path.splitext(complex_file)[0]
try:
os.environ['OE_LICENSE'] = license_path # change this to your OE_LICENSE path
# prepare the ligand and receptor for Vina i.e. convert to pdbqt format
prep = DockingPrepper('.',
lig_file=lig_file,
prot_file=prot_file,
pdb_id=complex_name,
preserve_water=preserve_water,
preserve_metal=preserve_metal) # this is not really the pdb_id but more of a basename for the files
# for vina preparation
prep.vina_process()
# using the DockingScorer class to get the docking score
scorer = DockingScorer('.',
lig_file,
prot_file,
complex_file=complex_file, # reference complex file, required for the vina process
get_vina_poses=True, # this only works for vina, there's no choice for OE - LOL!
save_out_file=True,
from_pdb=False,
csv_out_file=csv_out_file,
receptor_DU=None) # None because this is for Vina, but for OE, this will be the receptor DU (required)
docking_score = scorer.vina_score_ligand()
except Exception as e:
# ------- START OF CODES: save the error message to the .out file, None as the energy score, and write both the energy and the error message to a csv file -------
# Set up logging
logging.basicConfig(filename=f'{lig_name}_{prot_name}error_log.txt', level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')
logging.error(f"Error processing {lig_file}: {str(e)}")
print(f"Skipping {lig_file} due to an error: {str(e)}")
# saving the error message to the .txt file and None as the energy score
energy = None
df = pd.DataFrame({'ligand_name': [lig_file],
'protein_name': [prot_file],
'computed_dG': [energy],
'error_message' : [str(e)]}
)
if not os.path.isfile(csv_out_file):
df.to_csv(csv_out_file, index=True)
else: # else it exists so append without writing the header
df.to_csv(csv_out_file, mode='a', header=False, index=False)
print(f"Error message saved to {csv_out_file}")
# -------END OF CODES: save the error message to the .out file, None as the energy score, and write both the energy and the error message to a csv file -------
pass
new_dir = os.path.join(cwd, f'{lig_name}_{prot_name}')
os.makedirs(new_dir, exist_ok=True)
# copy the files to the new directory, this will overwrite the files if they already exist
os.system(f'mv -f *{lig_name}* {new_dir}')
os.system(f'mv -f *{prot_name}* {new_dir}')
os.system(f'mv -f *{complex_name}* {new_dir}')
# if the new directory already exists, forcibly remove it so we can overwrite it
if os.path.exists(f'data/{new_dir}'):
os.system(f'rm -rf data/{new_dir}')
# move the output dir to the data storage dir 'data'
os.system(f'mv -f {new_dir} ./data/')
print(f"Data saved in ./data/{new_dir}")
def oe_process_lig_prot(lig_file, prot_file, complex_file, preserve_water=False, preserve_metal=False, csv_out_file='oe_docking_data.csv'):
'''Final function to process each protein and ligand pair, prepare them for docking, score the ligand and save the output files.
Both lig_file and prot_file must be strings, not lists. If you want to process multiple ligands and proteins (i.e. LISTS), you should use this function in the following manner:
for lig, prot in tqdm(zip(lig_files, prot_files)):
oe_process_lig_prot(lig, prot)
...
'''
# TODO: handling lists..?
if isinstance(lig_file, list) or isinstance(prot_file, list) or isinstance(complex_file, list):
raise ValueError("lig_file and prot_file must be strings, not lists. If you are trying to process multiple ligands and proteins, you should use this function in a loop.")
# check if any of the input is none
if lig_file is None or prot_file is None or complex_file is None:
raise ValueError("lig_file, prot_file and complex_file must not be None. You risk deleting everything in your current directory if any of these is None!")
lig_name = os.path.splitext(lig_file)[0]
prot_name = os.path.splitext(prot_file)[0]
complex_name = os.path.splitext(complex_file)[0]
try:
os.environ['OE_LICENSE'] = license_path # change this to your OE_LICENSE path
# prepare the ligand and receptor
prep = DockingPrepper('.',
lig_file=lig_file,
prot_file=prot_file,
pdb_id=complex_name,
preserve_water=preserve_water,
preserve_metal=preserve_metal) # this is not really the pdb_id but more of a basename for the files
# OE preparation