forked from TUMFTM/Wale-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
54 lines (42 loc) · 1.69 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""
Install with
pip install --extra-index-url https://gitlab.lrz.de/api/v4/projects/54930/packages/pypi mod_prediction
"""
import setuptools
import subprocess
def git(*args):
return subprocess.check_output(["git"] + list(args))
# get latest tag
latest = git("describe", "--tags").decode().strip()
latest = latest.split("-")[0]
with open("requirements.txt") as f:
requirements = f.read().splitlines()
long_description = """
This repository provides a LSTM neural network for vehicle trajectory prediction with uncertainties.
The provided models and interfaces are optimized for the usage with CommonRoad.
Deployment in Motion Planning Framework:\n
1. Import the Prediction class (from pred import Prediction) \n
2. Intialize the Prediction class with a scenario (predictor = Prediction(scenario)) \n
3. Loop over the step function and provide time step and obstacle ID (Prediction.step(time_step, ost_id))
For further information see the Readme here:
https://gitlab.lrz.de/ga38hip/pred/-/blob/master/README.md
"""
setuptools.setup(
name="mod_prediction",
version=latest,
author="Maximilian Geisslinger, Phillip Karle",
author_email="[email protected], [email protected]",
description="Prediction module for CommonRoad",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://gitlab.lrz.de/motionplanning1/mod_prediction",
packages=setuptools.find_packages(),
install_requires=requirements,
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires=">=3.6",
include_package_data=True,
)