-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-1-4 vectors.py
189 lines (156 loc) · 6.05 KB
/
1-1-4 vectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""Use a set of functions for vectors."""
from math import sqrt, acos, pi
from decimal import Decimal, getcontext
getcontext().prec = 30
class Vector(object):
"""Use that class for playing with vectors."""
CANNOT_NORMALIZE_ZERO_VECTOR_MSG = 'Cannot normalize the zero vector'
def __init__(self, coordinates):
"""Use it to initiate vectors."""
try:
if not coordinates:
raise ValueError
self.coordinates = tuple([Decimal(x) for x in coordinates])
self.dimension = len(self.coordinates)
except ValueError:
raise ValueError('The coordinates must be nonempty')
except TypeError:
raise TypeError('The coordinates must be an iterable')
def __str__(self):
"""Use that function for printing vector."""
return 'Vector: {}'.format(self.coordinates)
def __eq__(self, v):
"""Use this function to compare two vectors."""
return self.coordinates == v.coordinates
def plus(self, v):
"""Use if for adding two vectors."""
new_coordinates = \
[x + y for x, y in zip(self.coordinates, v.coordinates)]
return Vector(new_coordinates)
def minus(self, v):
"""Use if for distracting two vectors."""
new_coordinates = [x-y for x, y in zip(self.coordinates, v.coordinates)]
return Vector(new_coordinates)
def multiply(self, a):
"""Use if for multiplying two vectors.
Scalar Multiple.
"""
new_coordinates = [Decimal(a) * x for x in self.coordinates]
return Vector(new_coordinates)
def magnitude(self):
"""Use if for magnitude calculation."""
coordinates_squared = [x**2 for x in self.coordinates]
return sqrt(sum(coordinates_squared))
'''
calculated_mag = 0
for x in range(len(self.coordinates)):
calculated_mag += self.coordinates[x] * self.coordinates[x]
calculated_mag = sqrt(calculated_mag)
return calculated_mag
'''
def normalized(self):
"""Use it to calculate a normalization of a vector."""
try:
calculated_mag = self.magnitude()
return self.multiply(Decimal('1.0')/Decimal(calculated_mag))
except ZeroDivisionError:
raise Exception(self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG)
'''
calculated_dir = 1/self.magnitude()
calculated_dir = self.multiply(calculated_dir)
'''
def dot(self, v):
"""Use if for calculation a dot product of two vectors."""
"""Dot product."""
return sum([x * y for x, y in zip(self.coordinates, v.coordinates)])
'''
calculated_product = 0
for x, y in zip(self.coordinates, v.coordinates):
calculated_product += x * y
return calculated_product
'''
def angle_with(self, v, in_degrees=False):
"""Use if to calculate angle between two vectors."""
try:
v_1 = self.normalized()
v_2 = v.normalized()
angle_in_radians = acos(v_1.dot(v_2))
if in_degrees:
degrees_per_radian = 180. / pi
return angle_in_radians / degrees_per_radian
else:
return angle_in_radians
except Exception as e:
if str(e) == self.CANNOT_NORMALIZE_ZERO_VECTOR_MSG:
raise Exception('Cannot compute \
an angle with the zero vector ')
else:
raise e
pass
def is_orthogonal_to(self, v, tolerance=1e-10):
"""Check if two vectors are orthogonal to each other."""
# 1e-10 dopuszcza tolerancje wyniku od minus 10 do plus 10.
return abs(self.dot(v)) < tolerance
def is_parrallel_to(self, v):
"""Check if two vectors are parralel."""
return (self.is_zero() or
v.is_zero() or
self.angle_with(v) == 0 or
self.angle_with(v) == pi)
def is_zero(self, tolerance=1e-10):
"""Check if vector is zero vector."""
return self.magnitude() < tolerance
# plus------------------------------
# vector_1 = Vector([8.218, -9.341])
# vector_2 = Vector([-1.129, 2.111])
# print (vector_1.plus(vector_2))
# print (Vector([8.218, -9.341]))
# minus-----------------------------
# vector_3 = Vector([7.119, 8.215])
# vector_4 = Vector([-8.223, 0.878])
# print (vector_3.minus(vector_4))
# scalar multiply-------------------
# vector_5 = Vector([1.671, -1.012, -0.318])
# print (vector_5.multiply(3))
# magnitude-------------------------
# vector_6 = Vector([-0.221, 7.437])
# vector_7 = Vector([8.813, -1.331, -6.247])
#
# print (vector_6.magnitude())
# print (vector_7.magnitude())
# direction / normalization---------
# vector_8 = Vector([5.581, -2.136])
# vector_9 = Vector([1.996, 3.108, -4.554])
# vector_10 = Vector([0, 0, 0])
#
# print (vector_8.normalized())
# print (vector_9.normalized())
# print (vector_10.normalized())
# product & angle---------------
# vector_11 = Vector([7.887, 4.138])
# vector_12 = Vector([-8.802, 6.776])
# vector_13 = Vector([-5.955, -4.904, -1.874])
# vector_14 = Vector([-4.496, -8.755, 7.103])
# vector_15 = Vector([3.183, -7.627])
# vector_16 = Vector([-2.668, 5.319])
# vector_17 = Vector([7.35, 0.221, 5.188])
# vector_18 = Vector([2.751, 8.259, 3.985])
# print (vector_11.product(vector_12))
# print (vector_13.product(vector_14))
# print (vector_15.angle(vector_16))
# print (vector_17.angle(vector_18, in_degrees=True))
# orthogonal or parallel ---------------------------
# vector_19 = Vector([1, 3, 5])
# vector_20 = Vector([2, 6, 10])
# vector_21 = Vector([-7.579, -7.88])
# vector_22 = Vector([22.737, 23.64])
# vector_23 = Vector([-2.029, 9.97, 4.172])
# vector_24 = Vector([-9.231, -6.639, -7.245])
# vector_25 = Vector([-2.328, -7.284, -1.214])
# vector_26 = Vector([-1.821, 1.072, -2.94])
# vector_25 = Vector([-2, -7, -1])
# vector_26 = Vector([-1, 1, -2])
# vector_27 = Vector([2.118, 4.827])
# vector_28 = Vector([0, 0])
# print (vector_21.is_orthogonal_to(vector_22))
# print (vector_27.is_parrallel_to(vector_28))