-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmTRFenvelope.m
96 lines (85 loc) · 3.38 KB
/
mTRFenvelope.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
function [y,t,cache] = mTRFenvelope(x,fsin,fsout,window,comp,buff,varargin)
%MTRFENVELOPE Estimate the temporal envelope of an audio signal.
% Y = MTRFENVELOPE(X,FSIN,FSOUT) computes the resampled temporal envelope
% of the audio signal X by averaging the square of the nearest neighbours
% every FSIN/FSOUT samples, taking the square root and logarithmically
% scaling the RMS intensity (Lalor & Foxe, 2010).
%
% If X is a matrix, it is assumed that the rows correspond to
% observations and the columns to variables, unless otherwise stated via
% the 'dim' parameter (see below). If it is a vector, it is assumed that
% the first non-singleton dimension corresponds to observations.
%
% Y = MTRFENVELOPE(X,FSIN,FSOUT,WINDOW) specifies the window size used to
% average data. Values greater than 1 result in overlap between the data
% used to estimate adjacent output frames resulting in increased envelope
% smoothing. By default, a window size of 1 is used.
%
% Y = MTRFENVELOPE(X,FSIN,FSOUT,WINDOW,COMP) specifies the amount of
% compression applied to the envelope by raising the RMS value of X to
% the power of COMP. By default, a value of log10(2) is used to model
% human auditory perception (Stevens, 1955).
%
% Y = MTRFENVELOPE(X,FSIN,FSOUT,WINDOW,COMP,BUFF) concatenates a buffer
% of initial data to the beginning of X to enable centering of the first
% window at time t=0. The buffer should be passed from the final state of
% previous data sampled at the input sample rate FSIN.
%
% [...] = MTRFENVELOPE(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies
% additional parameters and their values. Valid parameters are the
% following:
%
% Parameter Value
% 'dim' A scalar specifying the dimension to work along: pass
% in 1 to work along the columns (default), or 2 to work
% along the rows.
%
% See also ENVELOPE, HILBERT, RMS.
%
% mTRF-Toolbox https://github.com/mickcrosse/mTRF-Toolbox
% References:
% [1] Lalor EC, Foxe JJ (2010) Neural responses to uninterrupted
% natural speech can be extracted with precise temporal
% resolution. Eur J Neurosci 31(1):189-193.
% [2] Stevens SS (1955) The Measurement of Loudness. J Acoust Soc Am
% 27(2):815-829.
% Authors: Mick Crosse <[email protected]>
% Edmund Lalor <[email protected]>
% Copyright 2014-2024 Lalor Lab, Trinity College Dublin.
% Parse input arguments
arg = parsevarargin(varargin);
% Set default values
if nargin < 2 || isempty(fsin)
fsin = 1;
end
if nargin < 3 || isempty(fsout)
fsout = fsin;
end
if nargin < 4 || isempty(window)
window = 1;
end
if nargin < 5 || isempty(comp)
comp = log10(2);
end
if nargin < 6
buff = [];
end
% Compute signal power
x = x.^2;
% Resample via moving average
[y,t,cache] = mTRFresample(x,fsin,fsout,window,buff,'dim',arg.dim);
% Apply compression to envelope
y = sqrt(y).^comp;
function arg = parsevarargin(varargin)
%PARSEVARARGIN Parse input arguments.
% [PARAM1,PARAM2,...] = PARSEVARARGIN('PARAM1',VAL1,'PARAM2',VAL2,...)
% parses the input arguments of the main function.
% Create parser object
p = inputParser;
% Dimension to work along
errorMsg = 'It must be a positive integer scalar within indexing range.';
validFcn = @(x) assert(x==1||x==2,errorMsg);
addParameter(p,'dim',1,validFcn);
% Parse input arguments
parse(p,varargin{1,1}{:});
arg = p.Results;