-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmTRFevaluate.m
192 lines (162 loc) · 5.96 KB
/
mTRFevaluate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
function [r,err] = mTRFevaluate(y,pred,varargin)
%MTRFEVALUATE Evaluate the performance of a regression model.
% R = MTRFEVALUATE(Y,PRED) returns the correlation between the predicted
% output of a regression model PRED and the ground truth Y, based on
% Pearson's linear correlation coefficient.
%
% If Y or PRED are matrices, it is assumed that the rows correspond to
% observations and the columns to variables, unless otherwise stated via
% the 'dim' parameter (see below). If they are vectors, it is assumed
% that the first non-singleton dimension corresponds to observations.
% Y and PRED must have the same number of observations.
%
% [R,ERR] = MTRFEVALUATE(Y,PRED) returns the error between the predicted
% output and the ground truth, based on the mean squared error (MSE).
%
% [...] = MTRFEVALUATE(...,'PARAM1',VAL1,'PARAM2',VAL2,...) specifies
% additional parameters and their values. Valid parameters are the
% following:
%
% Parameter Value
% 'dim' A scalar specifying the dimension to work along: pass
% in 1 to work along the columns (default), or 2 to work
% along the rows. Applies to both Y and PRED.
% 'corr' A string specifying the correlation metric to use:
% 'Pearson' Pearson's linear correlation
% coefficient (default): suitable for
% data with a linear relationship
% 'Spearman' Spearman's rank correlation
% coefficient: suitable for data with a
% non-linear relationship
% 'error' A string specifying the error metric to use:
% 'mse' mean squared error (default): take the
% square root to convert to the original
% units (i.e., RMSE)
% 'mae' mean absolute error: more robust to
% outliers than MSE
% 'window' A scalar specifying the window size over which to
% compute performance in samples. By default, the entire
% trial or segment is used.
%
% See also CORR, CORRCOEF, TIEDRANK, IMMSE, MSE, MAE.
%
% mTRF-Toolbox https://github.com/mickcrosse/mTRF-Toolbox
% References:
% [1] Crosse MC, Di Liberto GM, Bednar A, Lalor EC (2016) The
% multivariate temporal response function (mTRF) toolbox: a MATLAB
% toolbox for relating neural signals to continuous stimuli. Front
% Hum Neurosci 10:604.
% Authors: Mick Crosse <[email protected]>
% Copyright 2014-2024 Lalor Lab, Trinity College Dublin.
% Parse input arguments
arg = parsevarargin(varargin);
% Orient data column-wise
if arg.dim == 2
y = y';
pred = pred';
end
% Get dimensions
[yobs,yvar] = size(y);
[pobs,pvar] = size(pred);
if pobs ~= yobs || pvar ~= yvar
error(['Y and PRED arguments must have the same number of '...
'observations and variables.'])
end
if arg.window
nwin = floor(yobs/arg.window);
else
nwin = 1;
end
% Initialize variables
r = zeros(nwin,yvar);
err = zeros(nwin,yvar);
for i = 1:nwin
if arg.window % use window
idx = arg.window*(i-1)+1:arg.window*i;
yi = y(idx,:);
predi = pred(idx,:);
nobs = numel(idx);
else % use entire trial
yi = y;
predi = pred;
nobs = yobs;
end
% Compute error
switch arg.error
case 'mse'
err(i,:) = sum(abs(yi-predi).^2,1)/nobs;
case 'mae'
err(i,:) = sum(abs(yi-predi),1)/nobs;
end
switch arg.corr
case 'Spearman' % convert to rank values
yi = num2rank(yi,nobs,yvar);
predi = num2rank(predi,nobs,pvar);
end
% Demean signals
y0 = bsxfun(@minus,yi,sum(yi,1)/nobs);
pred0 = bsxfun(@minus,predi,sum(predi,1)/nobs);
% Compute correlation coefficient
r(i,:) = sum(y0.*pred0,1)./sqrt(sum(y0.^2,1).*sum(pred0.^2,1));
end
function xranked = num2rank(x,nobs,nvar)
%NUM2RANK Rank numbers and average ties.
% XRANKED = NUM2RANK(X) ranks the values in each column of X and averages
% any tied ranks.
% Get dimensions
if nargin < 2
nobs = size(x,1);
nvar = size(x,2);
end
ranks = (1:nobs)';
% Initialize variables
xranked = zeros(nobs,nvar);
for i = 1:nvar
% Sort data in ascending order
[xsort,order] = sort(x(:,i));
ranki = ranks;
% Find ties
ties = xsort(1:nobs-1) >= xsort(2:nobs);
idx = [find(ties);nobs+2];
maxt = numel(idx);
% Average ties
ctr = 1;
while ctr < maxt
m = idx(ctr); n = 2;
while idx(ctr+1) == idx(ctr)+1
ctr = ctr+1; n = n+1;
end
ranki(m:m+n-1) = sum(ranki(m:m+n-1))/n;
ctr = ctr+1;
end
% Order ranks
xranked(order,i) = ranki;
end
function arg = parsevarargin(varargin)
%PARSEVARARGIN Parse input arguments.
% [PARAM1,PARAM2,...] = PARSEVARARGIN('PARAM1',VAL1,'PARAM2',VAL2,...)
% parses the input arguments of the main function.
% Create parser object
p = inputParser;
% Dimension to work along
errorMsg = 'It must be a positive integer scalar within indexing range.';
validFcn = @(x) assert(x==1||x==2,errorMsg);
addParameter(p,'dim',1,validFcn);
% Correlation metric
corrOptions = {'Pearson','Spearman'};
validFcn = @(x) any(validatestring(x,corrOptions));
addParameter(p,'corr','Pearson',validFcn);
% Error metric
errOptions = {'mse','mae'};
validFcn = @(x) any(validatestring(x,errOptions));
addParameter(p,'error','mse',validFcn);
% Window size
errorMsg = 'It must be a positive numeric scalar within indexing range.';
validFcn = @(x) assert(isnumeric(x)&&isscalar(x),errorMsg);
addParameter(p,'window',0,validFcn);
% Parse input arguments
parse(p,varargin{1,1}{:});
arg = p.Results;
% Redefine partially matched strings
arg.corr = validatestring(arg.corr,corrOptions);
arg.error = validatestring(arg.error,errOptions);