-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathlsq_block_kd.py
executable file
·356 lines (298 loc) · 16.6 KB
/
lsq_block_kd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import argparse
from datetime import datetime
import os
import time
from typing import List
import numpy as np
import torch
from torch import nn
import torch.distributed as dist
import torchvision
from tqdm import tqdm
from tensorboardX import SummaryWriter
from modules.training.dataset.imagenet_dataloader import build_imagenet_dataloader
from modules.training.lr_scheduler import get_lr_scheduler
from modules.training.optimizer import get_optimizer
from modules.training.dist_utils import DistributedAvgMetric, dist_print, is_master_proc, save_on_master
from modules.block_kd import get_quant_efficientnet_teacher_model, BlockKDManager, StagePlusProj
from modules.search_space.superspace import get_superspace, get_available_superspaces
from modules.training.loss_fn import NSRLoss
from modules.modeling.ops.lsq_plus import set_quant_mode
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dataset_path', default='imagenet_path', type=str, help='imagenet dataset path')
parser.add_argument('--output_path', default='./lsq_block_kd_output')
parser.add_argument('--teacher_arch', default='efficientnet-b5', type=str)
parser.add_argument('--teacher_checkpoint_path', default='./checkpoints/block_kd/teacher_checkpoint/checkpoint.pth')
parser.add_argument('--superspace', choices=get_available_superspaces(), required=True, type=str)
# training setting
parser.add_argument('--num_epochs', default=1, type=int)
parser.add_argument('--train_batch_size', default=64, type=int)
parser.add_argument('--eval_batch_size', default=50, type=int)
parser.add_argument('--learning_rate_list', default=[0.0025, 0.00025, 0.00025, 0.00025, 0.00025, 0.00025], nargs='+')
parser.add_argument('--lr_scheduler', default='cosine', choices=['cosine', 'step'])
parser.add_argument('--lr_step_size', default=20, type=int, help='decrease lr every step-size steps, only for cosine lr scheduler')
parser.add_argument('--lr_gamma', default=0.9, type=float, help='decrease lr by a factor of lr_gamma')
parser.add_argument('--optimizer', default='adam', choices=['sgd', 'sgd_nesterov', 'adam'], type=str)
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--augment', default='default', choices=['default', 'auto_augment_tf'])
parser.add_argument('--num_workers', default=16, type=int)
parser.add_argument('--grad_clip_value', default=1, help='gradient clip value')
parser.add_argument('--stage_list', nargs='*', help='only train stages in this list')
parser.add_argument('--valid_size', default=50000, help='size of validation dataset')
# compare training settings
parser.add_argument('--hw_list', nargs='+', default=[224])
parser.add_argument('--loss_fn', default='nsr', choices=['mse', 'nsr'], help='the type of loss function')
parser.add_argument('--inplace_distill_from_teacher', action='store_true', help='all students in sandwich rule learn from teacher')
# others
parser.add_argument('--test_only', action='store_true', help='skip training. only evaluate.')
parser.add_argument('--num_calib_batches', default=20, help='num batches to calibrate bn params')
parser.add_argument('--manual_seed', default=0, type=int)
parser.add_argument('--debug', action='store_true', help='debug mode, only train and eval a small number of batches')
args = parser.parse_args()
args.hw_list = [int(hw) for hw in args.hw_list]
args.learning_rate_list = [float(lr) for lr in args.learning_rate_list]
args.local_output_path = '.log'
return args
def main():
args = get_args()
dist.init_process_group(backend='nccl')
if is_master_proc():
os.makedirs(args.output_path, exist_ok=True)
os.makedirs(args.local_output_path, exist_ok=True)
args.device = torch.device('cuda', args.local_rank)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
np.random.seed(args.manual_seed)
dist_print(f'Loading dataset from {args.dataset_path}')
train_dataloader, valid_dataloader, test_dataloader, train_sampler = build_imagenet_dataloader(
dataset_path=args.dataset_path,
train_batch_size=args.train_batch_size,
eval_batch_size=args.eval_batch_size,
distributed=dist.is_initialized(),
augment=args.augment,
num_workers=args.num_workers,
valid_size=args.valid_size
)
eval_dataloader = valid_dataloader or test_dataloader
teacher = get_quant_efficientnet_teacher_model(args.teacher_arch)
if args.teacher_checkpoint_path:
if os.path.exists(args.teacher_checkpoint_path):
state_dict = torch.load(args.teacher_checkpoint_path, map_location='cpu')
teacher.load_state_dict(state_dict['model'])
dist_print(f'Load teacher state_dict from {args.teacher_checkpoint_path}')
else:
dist_print(f'teacher state dict {args.teacher_checkpoint_path} not exist, skip loadding')
teacher.to(args.device)
student_superspace = get_superspace(args.superspace)
block_kd_manager = BlockKDManager(superspace=student_superspace, teacher=teacher)
if is_master_proc():
writer = SummaryWriter(args.local_output_path)
else:
writer = None
start_time = time.time()
for stage_name in block_kd_manager.stage_name_list:
if not student_superspace.need_choose_block(stage_name):
continue
stages = block_kd_manager.get_stages(stage_name)
for model_name, model in stages:
if args.stage_list and model_name not in args.stage_list: # skip the stages not in args.stage_list
continue
dist_print(model)
if is_master_proc():
net_path = os.path.join(args.output_path, model_name, 'net.txt')
os.makedirs(os.path.dirname(net_path), exist_ok=True)
with open(net_path, 'w') as f:
f.write(str(model))
if args.test_only:
set_quant_mode(model)
state_dict = torch.load(os.path.join(args.output_path, model_name, 'checkpoint.pth'), map_location='cpu')
model.load_state_dict(state_dict['model'])
model.to(args.device)
model = nn.parallel.DistributedDataParallel(model, device_ids=[args.device], find_unused_parameters=True)
criterion = nn.MSELoss() if args.loss_fn == 'mse' else NSRLoss()
evaluate_stage(stage_name, model_name, args, model, teacher, criterion, eval_dataloader, train_dataloader, state_dict['epoch'])
else:
train_stage(stage_name, args, model, teacher, model_name, train_dataloader, eval_dataloader, writer)
end_time = time.time()
time_s = end_time - start_time
dist_print(f'Training time: {time_s/3600:.2f}h')
def train_stage(stage_name: str, args, model: nn.Module, teacher: nn.Module, model_name: str, train_dataloader, eval_dataloader, writer: SummaryWriter):
model.to(args.device)
teacher.to(args.device)
model = nn.parallel.DistributedDataParallel(model, device_ids=[args.device], find_unused_parameters=True)
model_without_ddp = model.module
parameters = model.parameters()
optimizer = get_optimizer(args.optimizer, args.learning_rate_list[int(stage_name[-1])-1], parameters, args.momentum, args.weight_decay)
lr_scheduler = get_lr_scheduler(args.lr_scheduler, optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma,
epochs=args.num_epochs, T_max=len(train_dataloader) * args.num_epochs // args.lr_step_size)
if args.loss_fn == 'mse':
criterion = nn.MSELoss()
elif args.loss_fn == 'nsr':
criterion = NSRLoss()
else:
raise ValueError(args.loss_fn)
checkpoint_path = os.path.join(args.output_path, model_name, 'checkpoint.pth')
if os.path.exists(checkpoint_path):
state_dict = torch.load(checkpoint_path, map_location=args.device)
model.module.load_state_dict(state_dict['model'])
dist_print(f'Load state_dict from {checkpoint_path}, epoch {state_dict["epoch"]}')
else:
dist_print(f'checkpoint path {checkpoint_path} not exist, skip loading, LSQ from scratch.')
log_path = os.path.join(args.local_output_path, model_name, 'lsq_train.log')
remote_log_path = os.path.join(args.output_path, model_name, 'lsq_train.log')
if is_master_proc():
os.makedirs(os.path.dirname(log_path), exist_ok=True)
os.makedirs(os.path.dirname(remote_log_path), exist_ok=True)
for epoch in range(args.num_epochs):
model.train()
teacher.train()
set_quant_mode(model)
dist_print(f'{model_name} switched to quant mode')
# train one epoch
with tqdm(total=len(train_dataloader), desc=f'train {model_name} epoch [{epoch} / {args.num_epochs}]', disable=not is_master_proc()) as t:
for batch_idx, (image, label) in enumerate(train_dataloader):
image = image.to(args.device)
# sandwich rule
losses = []
for i in range(4):
# resize image
_mode = ['max', 'min', 'random', 'random'][i]
image_resized = resize_image(image, get_input_resolution(_mode, args.hw_list))
with torch.no_grad():
if i == 0 or len(args.hw_list) > 1:
teacher_out, teacher_in = teacher.forward_to_stage(image_resized, stage_name)
# use the output of max stage to distill other smaller stages
if i != 0 and not args.inplace_distill_from_teacher:
model_without_ddp.set_max_sub_stage()
with torch.no_grad():
max_stage_out = model(teacher_in)
# set student stage
if i == 0:
model_without_ddp.set_max_sub_stage()
if i == 1:
model_without_ddp.set_min_sub_stage()
if i > 1:
model_without_ddp.sample_active_sub_stage()
# forward and backward
student_out = model(teacher_in)
loss = criterion(student_out, teacher_out if i == 0 or args.inplace_distill_from_teacher else max_stage_out)
loss.backward()
losses.append(round(loss.item(), 4))
# clip gradient
if args.grad_clip_value:
torch.nn.utils.clip_grad_value_(model.parameters(), args.grad_clip_value)
optimizer.step()
optimizer.zero_grad()
t.set_postfix(losses=losses, lr=optimizer.param_groups[0]['lr'])
t.update()
if is_master_proc():
with open(log_path, 'a') as f:
f.write(f'{datetime.now()} | epoch {epoch} | batch {batch_idx}/{len(train_dataloader)} | losses {losses} | lr {optimizer.param_groups[0]["lr"]}\n')
if writer:
writer.add_scalar(f'{model_name}/lsq_loss/max', losses[0], epoch * len(train_dataloader) + batch_idx)
writer.add_scalar(f'{model_name}/lsq_loss/min', losses[1], epoch * len(train_dataloader) + batch_idx)
writer.add_scalar(f'{model_name}/lsq_loss/random1', losses[2], epoch * len(train_dataloader) + batch_idx)
writer.add_scalar(f'{model_name}/lsq_loss/random2', losses[3], epoch * len(train_dataloader) + batch_idx)
writer.add_scalar(f'{model_name}/lsq_learning_rates', optimizer.param_groups[0]['lr'], epoch * len(train_dataloader) + batch_idx)
# cosine lr scheduler update per args.lr_step_size steps
if args.lr_scheduler == 'cosine' and batch_idx and batch_idx % args.lr_step_size == 0:
lr_scheduler.step()
if args.debug and batch_idx >= 3: break
# eval, update and checkpoint
if args.lr_scheduler == 'step': # step lr scheduler update per epoch
lr_scheduler.step()
evaluate_stage(stage_name, model_name, args, model, teacher, criterion, eval_dataloader, train_dataloader, epoch, writer)
checkpoint = {
'epoch': epoch,
'model': model.module.state_dict(),
'lr_schduler': lr_scheduler.state_dict(),
'optimizer': optimizer.state_dict()
}
checkpoint_path = os.path.join(args.output_path, model_name, 'lsq.pth')
save_on_master(checkpoint, checkpoint_path)
if is_master_proc():
os.system(f'cp {log_path} {remote_log_path}')
os.system(f'cp {args.local_output_path}/* {args.output_path}')
if args.debug: break
def evaluate_stage(stage_name, model_name, args, model, teacher, criterion, eval_dataloader, train_dataloader, epoch, writer=None):
model.eval()
teacher.eval()
models_to_eval = {'max': model.module.set_max_sub_stage, 'min': model.module.set_min_sub_stage, 'random': model.module.sample_active_sub_stage}
losses = []
for sub_stage_type, set_func in models_to_eval.items():
loss_metric = DistributedAvgMetric()
set_func()
hw = get_input_resolution(sub_stage_type, args.hw_list)
# calibrate bn running stats
def sub_train_loader(num_batches):
for i, (image, label) in enumerate(train_dataloader):
if i < num_batches:
image = image.to(args.device)
image = resize_image(image, hw)
teacher_out, teacher_in = teacher.forward_to_stage(image, stage_name)
yield teacher_in, teacher_out
else:
break
calibrate_bn_params(model, sub_train_loader(args.num_calib_batches))
# eval
with tqdm(total=len(eval_dataloader), desc=f'eval {model_name+"_"+sub_stage_type}, epoch {epoch}', disable=not is_master_proc()) as t:
for batch_idx, (image, label) in enumerate(eval_dataloader):
image = image.to(args.device)
image = resize_image(image, hw)
with torch.no_grad():
teacher_out, teacher_in = teacher.forward_to_stage(image, stage_name)
student_out = model(teacher_in)
loss = criterion(student_out, teacher_out)
loss_metric.update(loss, len(image))
t.set_postfix(loss=round(loss_metric.avg, 4))
t.update()
if args.debug and batch_idx >= 3: break
losses.append(round(loss_metric.avg, 4))
if is_master_proc():
log_path = os.path.join(args.output_path, model_name, 'lsq_eval.log')
os.makedirs(os.path.dirname(log_path), exist_ok=True)
with open(log_path, 'a') as f:
f.write(f'{datetime.now()} | epoch {epoch} | eval losses (max min random): {",".join([str(_) for _ in losses])}\n')
if writer:
writer.add_scalar(f'{model_name}/lsq_eval_loss/max', losses[0], epoch)
writer.add_scalar(f'{model_name}/lsq_eval_loss/min', losses[1], epoch)
writer.add_scalar(f'{model_name}/lsq_eval_loss/random', losses[2], epoch)
def get_input_resolution(mode, hw_list) -> int:
if mode == 'max':
target_hw = max(hw_list)
if mode == 'min':
target_hw = min(hw_list)
if mode == 'random':
target_hw = np.random.choice(hw_list)
return target_hw
def resize_image(x, hw) -> torch.Tensor:
if x.shape[-1] != hw:
x = torch.nn.functional.interpolate(x, size=hw, mode='bicubic')
return x
def calibrate_bn_params(model: nn.Module, data_loader):
# reset running stats
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.training = True
m.momentum = None
m.reset_running_stats()
with torch.no_grad():
for teacher_in, _ in data_loader:
model(teacher_in)
model.eval()
# sync bn running stats
if dist.is_initialized():
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
dist.all_reduce(m.running_mean, op=dist.ReduceOp.SUM)
dist.all_reduce(m.running_var, op=dist.ReduceOp.SUM)
m.running_mean /= dist.get_world_size()
m.running_var /= dist.get_world_size()
dist.all_reduce(m.num_batches_tracked)
if __name__ == '__main__':
main()