-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathgenerate.py
51 lines (43 loc) · 1.92 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from toxigen.language_models import GPT3, ALICE
from toxigen.pretrained_classifiers import HateBERT, ToxDectRoBERTa
import argparse
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--input_prompt_file", type=str)
parser.add_argument("--language_model", type=str)
parser.add_argument("--output_file", type=str)
parser.add_argument("--num_generations_per_prompt", type=int)
parser.add_argument("--endpoint_url", type=str)
parser.add_argument("--api_key", type=str)
parser.add_argument("--classifier", type=str)
parser.add_argument("--generation_mode", type=str) # Can either be "neutral" or "hate", and indicates what you want to generate
parser.add_argument("--ALICE", default=False, type=bool)
args = parser.parse_args()
# --- load prompts ---
prompts = [l.strip() for l in open(args.input_prompt_file).readlines()]
# --- initialize language model ---
if args.language_model == "GPT3":
language_model = GPT3(endpoint_url=args.endpoint_url, apikey=args.api_key)
elif args.language_model == "GPT2":
language_model = GPT2()
else:
raise ValueError
if args.ALICE:
# --- initialize pretrained toxicity classifier ---
if args.classifier == "HateBERT":
classifier = HateBERT("<path_to_hatebert_files>")
elif args.classifier == "RoBERTa":
classifier = ToxDectRoBERTa()
else:
raise NotImplementedError
# --- wrap language model and toxicity detector in ALICE ---
language_model = ALICE(language_model, classifier, args.generation_mode)
# --- loop through prompts and generate responses ---
for prompt in prompts:
for i in range(args.num_generations_per_prompt):
response = language_model(prompt)
with open(args.output_file, "a") as f:
f.write(response + "\n")
if __name__ == "__main__":
main()