You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have attached the required materials for reference : Material
When running the nn-meter predictor command:
nn-meter predict --predictor tflitemicropredictor --predictor-version 1.0 --onnx googlenet_0_deq.onnx
resulted in the following error:
2023-05-05 17:21:23.559308: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2023-05-05 17:21:23.559335: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
(nn-Meter) checking local kernel predictors at /../nn-Meter/py3.9_env/tflitemicropredictor
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/addrelu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/dwconv-bn-relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/add.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/bnrelu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/global-avgpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/bn.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/maxpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/hswish.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/fc.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/conv-bn-relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/split.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/se.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/avgpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/concat.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/channelshuffle.pkl
(nn-Meter) Start latency prediction ...
Traceback (most recent call last):
File "/../nn-Meter/py3.9_env/bin/nn-meter", line 33, in
sys.exit(load_entry_point('nn-meter', 'console_scripts', 'nn-meter')())
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/utils/nn_meter_cli/interface.py", line 266, in nn_meter_cli
args.func(args)
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/utils/nn_meter_cli/predictor.py", line 56, in apply_latency_predictor_cli
latency = predictor.predict(model, model_type) # in unit of ms
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/nn_meter_predictor.py", line 113, in predict
py = nn_predict(self.kernel_predictors, self.kd.get_kernels()) # in unit of ms
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/prediction/predict_by_kernel.py", line 54, in nn_predict
py = predict_model(features, predictors)
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/prediction/predict_by_kernel.py", line 39, in predict_model
pys = pred.predict(dicts[kernel]) # in unit of ms
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/ensemble/_forest.py", line 981, in predict
X = self._validate_X_predict(X)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/ensemble/_forest.py", line 602, in _validate_X_predict
X = self._validate_data(X, dtype=DTYPE, accept_sparse="csr", reset=False)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/base.py", line 588, in _validate_data
self._check_n_features(X, reset=reset)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/base.py", line 389, in _check_n_features
raise ValueError(
ValueError: X has 6 features, but RandomForestRegressor is expecting 5 features as input.
Hope you reply back soon.
Thank you.
The text was updated successfully, but these errors were encountered:
When i tried debugging this issue , the error is raised when we are using 'concat' predictor. When building , we fit the random forest regressor with 5 features ( refer here ) with feature list as "concat": ["HW", "CIN1", "CIN2", "CIN3", "CIN4"] which are extracted from the model whereas when we are trying to predict , we are extracting the features and appending no. of input tensors as another feature which is giving us 6 features from the model hence getting this error refer here can you say why we are adding that additional feature ? keeping the snippet here features = [inputh, len(itensors)]
When i tried debugging this issue , the error is raised when we are using 'concat' predictor. When building , we fit the random forest regressor with 5 features ( refer here ) with feature list as "concat": ["HW", "CIN1", "CIN2", "CIN3", "CIN4"] which are extracted from the model whereas when we are trying to predict , we are extracting the features and appending no. of input tensors as another feature which is giving us 6 features from the model hence getting this error refer here can you say why we are adding that additional feature ? keeping the snippet here features = [inputh, len(itensors)]
Did necessary changes to the way we extract features while predicting and raised a pull request here
Hi ,
I have generated an google net onnx model for prediction and the model is compatible to predict using in built predictor but i couldn't predict using my customized predictor. From the families listed in https://github.com/microsoft/nn-Meter/tree/dev/dataset-generator/nn_meter/dataset/generator/configs , I am facing this issue with google net , dense net , squeeze net , shufflenetV2 families.
I have attached the required materials for reference : Material
When running the nn-meter predictor command:
nn-meter predict --predictor tflitemicropredictor --predictor-version 1.0 --onnx googlenet_0_deq.onnx
resulted in the following error:
2023-05-05 17:21:23.559308: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory
2023-05-05 17:21:23.559335: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
(nn-Meter) checking local kernel predictors at /../nn-Meter/py3.9_env/tflitemicropredictor
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/addrelu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/dwconv-bn-relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/add.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/bnrelu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/global-avgpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/bn.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/maxpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/hswish.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/fc.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/conv-bn-relu.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/split.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/se.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/avgpool.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/concat.pkl
(nn-Meter) load predictor /../nn-Meter/py3.9_env/tflitemicropredictor/channelshuffle.pkl
(nn-Meter) Start latency prediction ...
Traceback (most recent call last):
File "/../nn-Meter/py3.9_env/bin/nn-meter", line 33, in
sys.exit(load_entry_point('nn-meter', 'console_scripts', 'nn-meter')())
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/utils/nn_meter_cli/interface.py", line 266, in nn_meter_cli
args.func(args)
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/utils/nn_meter_cli/predictor.py", line 56, in apply_latency_predictor_cli
latency = predictor.predict(model, model_type) # in unit of ms
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/nn_meter_predictor.py", line 113, in predict
py = nn_predict(self.kernel_predictors, self.kd.get_kernels()) # in unit of ms
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/prediction/predict_by_kernel.py", line 54, in nn_predict
py = predict_model(features, predictors)
File "/../nn-Meter/py3.9_env/nn-Meter/nn_meter/predictor/prediction/predict_by_kernel.py", line 39, in predict_model
pys = pred.predict(dicts[kernel]) # in unit of ms
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/ensemble/_forest.py", line 981, in predict
X = self._validate_X_predict(X)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/ensemble/_forest.py", line 602, in _validate_X_predict
X = self._validate_data(X, dtype=DTYPE, accept_sparse="csr", reset=False)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/base.py", line 588, in _validate_data
self._check_n_features(X, reset=reset)
File "/../nn-Meter/py3.9_env/lib/python3.9/site-packages/sklearn/base.py", line 389, in _check_n_features
raise ValueError(
ValueError: X has 6 features, but RandomForestRegressor is expecting 5 features as input.
Hope you reply back soon.
Thank you.
The text was updated successfully, but these errors were encountered: