-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_gpt.py
181 lines (139 loc) · 5.39 KB
/
evaluate_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# # -*- coding: utf-8 -*-
# """evaluate.ipynb
# Automatically generated by Colaboratory.
# Original file is located at
# https://colab.research.google.com/drive/1_WZN6_5mgwRgg484xzXMSwCXBQXfr8Vj
# """
# # -*- coding: utf-8 -*-
# """# code here"""
# print("**************OUTPUT FILE PATH UPDATED FOR SEED 42 hinglish ******************")
import numpy as np
import timeit
import torch
#from torch.utils.data import DataLoader, TensorDataset, RandomSampler
import json, argparse
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import transformers
from transformers import GPT2Tokenizer, GPT2LMHeadModel
print('use transformers version = ',transformers.__version__) # make sure it is 2.6.0
def add_special_tokens(tokenizer):
""" Returns GPT2 tokenizer after adding separator and padding tokens """
#tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
special_tokens = {'bos_token':'<|startoftext|>','eos_token':'<|endoftext|>', 'pad_token':'<|pad|>','sep_token':'<|summarize|>'}
num_add_toks = tokenizer.add_special_tokens(special_tokens)
return tokenizer
class GPT21024Dataset(Dataset):
#def __init__(self, root_dir, ids_file, mode='train',length=None):
def __init__(self, text, ctext, tokenizer, source_len, summ_len):
self.tokenizer = add_special_tokens(tokenizer)
# self.data = dataframe
self.source_len = source_len
self.summ_len = summ_len
# self.text = self.data['summary-hinglish'] ## the summary
# self.ctext = self.data['dialogue-hinglish'] ## ctext is the article to be summarized
self.text = text ## the summary
self.ctext = ctext
def __len__(self):
return len(self.ctext)
#return self.len
def __getitem__(self,index):
##articles
ctext = str(self.ctext[index])
ctext = ' '.join(ctext.split())
##summaries
text = str(self.text[index])
text = ' '.join(text.split())
tok_data={}
tok_data['article']= ctext
tok_data['summary']= text
input_ids= '<|startoftext|>' + tok_data['article'] + '<|summarize|>'
summary= tok_data['summary']
content = self.tokenizer.encode(input_ids, max_length = 512, padding='max_length',truncation=True)
summary_target_ids= self.tokenizer.encode( summary, max_length = 512, padding='max_length',truncation=True)
#texts[:len(content)] = content
texts = torch.tensor(content)
summary_target_ids=torch.tensor(summary_target_ids)
sample = {'article': texts, 'actual_summary': summary_target_ids, 'sum_idx': len(self.tokenizer.encode(tok_data['article']))}
return sample
def gpt_eval(
verbose=True,
model_name_path=None,
src_txt=None,
tar_txt=None,
gen_path=None,
scor_path=None,
batch_size=4
):
"""
"""
predictions=[]
actuals=[]
model = GPT2LMHeadModel.from_pretrained(model_name_path)
tokenizer = GPT2Tokenizer.from_pretrained(model_name_path)
# Add a [CLS] to the vocabulary (we should train it also!)
#special_tokens = {'bos_token':'<|startoftext|>','eos_token':'<|endoftext|>','pad_token':'<pad>','additional_special_tokens':['<|keyword|>','<|summarize|>']}
#tokenizer.add_special_tokens(special_tokens)
"""
special_tokens = {'pad_token':'<|pad|>','sep_token':'<|summarize|>'}
tokenizer.add_special_tokens(special_tokens)
#assert len(tokenizer) == 50261, "tokenizer size is not 50261"
model.resize_token_embeddings(len(tokenizer))
print(' ')
"""
model = model.to(device)
model.eval()
"""
input_text = input_text +' <|summarize|>'
input_token = tokenizer.encode(input_text)
input_token_torch = torch.tensor(input_token, dtype=torch.long)
"""
val_params = {
'batch_size':batch_size,
'shuffle': False,
'num_workers': 0
}
sp= open(src_txt,'r')
src= sp.readlines()
sp.close()
tp = open(tar_txt, 'r')
tar=tp.readlines()
tp.close()
val_set = GPT21024Dataset(tar, src,tokenizer, 512, 150)
val_loader = DataLoader(val_set, **val_params)
with torch.no_grad():
for _, data in enumerate(val_loader, 0):
target_output = data['actual_summary'].to(device, dtype = torch.long)
input_ids = data['article']
input_ids=input_ids.to(device)
#print(input_ids)
print(f'Length of the input context: {len(input_ids[0])}')
print(f'BEAM SIZE: {4}')
#input_ids.unsqueeze(0).to(device)
generated_output = model.generate(
input_ids=input_ids,
max_length= 582,
min_length = 562 ,
temperature=1.0,
decoder_start_token_id= '<|summarize|>',
num_beams=4,
num_return_sequences=1)
# print(f' Generated_output: {generated_output}')
preds=[]
target=[]
ids=[]
for g in generated_output:
preds.append(tokenizer.decode(g[len(input_ids[0]):] , skip_special_tokens=True))
#preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_output]
for t in target_output:
target.append(tokenizer.decode(t , skip_special_tokens=True))
#target = [tokenizer.decode(t, skip_special_tokens=True, clean_up_tokenization_spaces=True)for t in y]
if _%100==0:
print(f'Completed {_}')
predictions.extend(preds)
actuals.extend(target)
gp= open(gen_path, 'w')
for pre in predictions:
gp.write(pre+"\n")
gp.close()