-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathchapter06.m
42 lines (33 loc) · 1.16 KB
/
chapter06.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
%% Analyzing Neural Time Series Data
% Matlab code for Chapter 6
% Mike X Cohen
%
% This code accompanies the book, titled "Analyzing Neural Time Series Data"
% (MIT Press). Using the code without following the book may lead to confusion,
% incorrect data analyses, and misinterpretations of results.
% Mike X Cohen assumes no responsibility for inappropriate or incorrect use of this code.
%% Figure 6.2
% create sine wave
srate = 1000;
time = 0:1/srate:1;
frequency = 3;
sinewave = sin(2*pi*frequency.*time);
figure
subplot(311)
plot(time,sinewave,'r')
set(gca,'xlim',[-.05 time(end)*1.05],'ylim',[-1.1 1.1])
hold on
sampling1 = round(linspace(1,length(time),frequency*2));
plot(time(sampling1),sinewave(sampling1),'o')
title('continuous sine wave')
sampling2 = round(linspace(1,length(time),frequency*20));
plot(time(sampling2),sinewave(sampling2),'+')
subplot(312)
plot(time(sampling1),sinewave(sampling1),'-o')
set(gca,'xlim',[-.05 time(end)*1.05],'ylim',[-1.1 1.1])
title('sampled at 2*frequency')
subplot(313)
plot(time(sampling2),sinewave(sampling2),'-+')
title('sampled at 20*frequency')
set(gca,'xlim',[-.05 time(end)*1.05],'ylim',[-1.1 1.1])
%% end.