-
Notifications
You must be signed in to change notification settings - Fork 145
/
Copy pathmodel.py
722 lines (549 loc) · 24.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
from utils import GeneratDefaultBoxes, GridAnchorGenerator
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor
from mindspore.common.initializer import TruncatedNormal, initializer
from mindspore.communication.management import get_group_size
from mindspore.context import ParallelMode
from mindspore.parallel._auto_parallel_context import auto_parallel_context
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod="same"):
return nn.Conv2d(
in_channel, out_channel, kernel_size=kernel_size, stride=stride, padding=0, pad_mode=pad_mod, has_bias=True
)
def _bn(channel):
return nn.BatchNorm2d(
channel, eps=1e-3, momentum=0.97, gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1
)
def _last_conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod="same", pad=0):
in_channels = in_channel
out_channels = in_channel
depthwise_conv = nn.Conv2d(
in_channels, out_channels, kernel_size, stride, pad_mode=pad_mod, padding=pad, group=in_channels
)
conv = _conv2d(in_channel, out_channel, kernel_size=1)
return nn.SequentialCell([depthwise_conv, _bn(in_channel), nn.ReLU6(), conv])
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
shared_conv(Cell): Use the weight shared conv, default: None.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, shared_conv=None):
super(ConvBNReLU, self).__init__()
padding = 0
in_channels = in_planes
out_channels = out_planes
if shared_conv is None:
if groups == 1:
conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode="same", padding=padding)
else:
out_channels = in_planes
conv = nn.Conv2d(
in_channels, out_channels, kernel_size, stride, pad_mode="same", padding=padding, group=in_channels
)
layers = [conv, _bn(out_planes), nn.ReLU6()]
else:
layers = [shared_conv, _bn(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class InvertedResidual(nn.Cell):
"""
Residual block definition.
Args:
inp (int): Input channel.
oup (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
expand_ratio (int): expand ration of input channel
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, inp, oup, stride, expand_ratio, last_relu=False):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend(
[
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
_bn(oup),
]
)
self.conv = nn.SequentialCell(layers)
self.cast = ops.Cast()
self.last_relu = last_relu
self.relu = nn.ReLU6()
def construct(self, x):
identity = x
x = self.conv(x)
if self.use_res_connect:
x = identity + x
if self.last_relu:
x = self.relu(x)
return x
class MobileNetV2Wrapper(nn.Cell):
def __init__(self, backbone, args):
super(MobileNetV2Wrapper, self).__init__()
self.backbone = backbone
feature1_output_channels = backbone.out_channels[0]
self.feature1_expand_layer = ConvBNReLU(
feature1_output_channels, int(round(feature1_output_channels * 6)), kernel_size=1
)
in_channels = args.extras_in_channels
out_channels = args.extras_out_channels
ratios = args.extras_ratio
strides = args.extras_strides
residual_list = []
for i in range(2, len(in_channels)):
residual = InvertedResidual(
in_channels[i], out_channels[i], stride=strides[i], expand_ratio=ratios[i], last_relu=True
)
residual_list.append(residual)
self.multi_residual = nn.CellList(residual_list)
self._initialize_weights()
def _initialize_weights(self) -> None:
params = self.feature1_expand_layer.trainable_params()
params.extend(self.multi_residual.trainable_params())
for p in params:
if "beta" not in p.name and "gamma" not in p.name and "bias" not in p.name:
p.set_data(initializer(TruncatedNormal(0.02), p.data.shape, p.data.dtype))
def construct(self, x):
feature1, feature2 = self.backbone(x)
layer_out = self.feature1_expand_layer(feature1)
multi_feature = (layer_out, feature2)
feature = feature2
for residual in self.multi_residual:
feature = residual(feature)
multi_feature += (feature,)
return multi_feature
class FPNTopDown(nn.Cell):
"""
Fpn to extract features
"""
def __init__(self, in_channel_list, out_channels):
super(FPNTopDown, self).__init__()
self.lateral_convs_list_ = []
self.fpn_convs_ = []
for channel in in_channel_list:
l_conv = nn.Conv2d(
channel, out_channels, kernel_size=1, stride=1, has_bias=True, padding=0, pad_mode="same"
)
fpn_conv = ConvBNReLU(out_channels, out_channels, kernel_size=3, stride=1)
self.lateral_convs_list_.append(l_conv)
self.fpn_convs_.append(fpn_conv)
self.lateral_convs_list = nn.layer.CellList(self.lateral_convs_list_)
self.fpn_convs_list = nn.layer.CellList(self.fpn_convs_)
self.num_layers = len(in_channel_list)
def construct(self, inputs):
image_features = ()
for i, feature in enumerate(inputs):
image_features = image_features + (self.lateral_convs_list[i](feature),)
features = (image_features[-1],)
for i in range(len(inputs) - 1):
top = len(inputs) - i - 1
down = top - 1
size = ops.shape(inputs[down])
top_down = ops.ResizeBilinearV2()(features[-1], (size[2], size[3]))
top_down = top_down + image_features[down]
features = features + (top_down,)
extract_features = ()
num_features = len(features)
for i in range(num_features):
extract_features = extract_features + (self.fpn_convs_list[i](features[num_features - i - 1]),)
return extract_features
class BottomUp(nn.Cell):
"""
Bottom Up feature extractor
"""
def __init__(self, levels, channels, kernel_size, stride):
super(BottomUp, self).__init__()
self.levels = levels
bottom_up_cells = [ConvBNReLU(channels, channels, kernel_size, stride) for x in range(self.levels)]
self.blocks = nn.CellList(bottom_up_cells)
def construct(self, features):
for block in self.blocks:
features = features + (block(features[-1]),)
return features
class ResNet50FPNWrapper(nn.Cell):
def __init__(self, backbone, args):
super(ResNet50FPNWrapper, self).__init__()
self.backbone = backbone
self.fpn = FPNTopDown([512, 1024, 2048], 256)
self.bottom_up = BottomUp(2, 256, 3, 2)
self._initialize_weights()
def _initialize_weights(self) -> None:
params = self.fpn.trainable_params()
params.extend(self.bottom_up.trainable_params())
for p in params:
if "beta" not in p.name and "gamma" not in p.name and "bias" not in p.name:
p.set_data(initializer(TruncatedNormal(0.02), p.data.shape, p.data.dtype))
def construct(self, x):
feature1, feature2, feature3 = self.backbone(x)
features = self.fpn((feature1, feature2, feature3))
features = self.bottom_up(features)
return features
class MobileNetV3Wrapper(nn.Cell):
def __init__(self, backbone, args):
super(MobileNetV3Wrapper, self).__init__()
self.backbone = backbone
feature1_output_channels = backbone.out_channels[0]
self.feature1_expand_layer = nn.SequentialCell(
[
nn.Conv2d(feature1_output_channels, 672, 1, 1, pad_mode="pad", padding=0, has_bias=False),
nn.BatchNorm2d(672),
nn.HSwish(),
]
)
in_channels = args.extras_in_channels
out_channels = args.extras_out_channels
ratios = args.extras_ratio
strides = args.extras_strides
residual_list = []
for i in range(2, len(in_channels)):
residual = InvertedResidual(
in_channels[i], out_channels[i], stride=strides[i], expand_ratio=ratios[i], last_relu=True
)
residual_list.append(residual)
self.multi_residual = nn.CellList(residual_list)
self._initialize_weights()
def _initialize_weights(self) -> None:
params = self.feature1_expand_layer.trainable_params()
params.extend(self.multi_residual.trainable_params())
for p in params:
if "beta" not in p.name and "gamma" not in p.name and "bias" not in p.name:
p.set_data(initializer(TruncatedNormal(0.02), p.data.shape, p.data.dtype))
def construct(self, x):
feature1, feature2 = self.backbone(x)
layer_out = self.feature1_expand_layer(feature1)
multi_feature = (layer_out, feature2)
feature = feature2
for residual in self.multi_residual:
feature = residual(feature)
multi_feature += (feature,)
return multi_feature
backbone_wrapper = {
"mobilenet_v2_100": MobileNetV2Wrapper,
"resnet50": ResNet50FPNWrapper,
"mobilenet_v3_large_100": MobileNetV3Wrapper,
}
class FlattenConcat(nn.Cell):
"""
Concatenate predictions into a single tensor.
Args:
config (dict): The default config of SSD.
Returns:
Tensor, flatten predictions.
"""
def __init__(self, args):
super(FlattenConcat, self).__init__()
self.num_ssd_boxes = args.num_ssd_boxes
self.concat = ops.Concat(axis=1)
self.transpose = ops.Transpose()
def construct(self, inputs):
output = ()
batch_size = ops.shape(inputs[0])[0]
for x in inputs:
x = self.transpose(x, (0, 2, 3, 1))
output += (ops.reshape(x, (batch_size, -1)),)
res = self.concat(output)
return ops.reshape(res, (batch_size, self.num_ssd_boxes, -1))
class MultiBox(nn.Cell):
"""
Multibox conv layers. Each multibox layer contains class conf scores and localization predictions.
Args:
config (dict): The default config of SSD.
Returns:
Tensor, localization predictions.
Tensor, class conf scores.
"""
def __init__(self, args):
super(MultiBox, self).__init__()
num_classes = args.num_classes
out_channels = args.extras_out_channels
num_default = args.num_default
loc_layers = []
cls_layers = []
for k, out_channel in enumerate(out_channels):
loc_layers += [
_last_conv2d(out_channel, 4 * num_default[k], kernel_size=3, stride=1, pad_mod="same", pad=0)
]
cls_layers += [
_last_conv2d(out_channel, num_classes * num_default[k], kernel_size=3, stride=1, pad_mod="same", pad=0)
]
self.multi_loc_layers = nn.CellList(loc_layers)
self.multi_cls_layers = nn.CellList(cls_layers)
self.flatten_concat = FlattenConcat(args)
def construct(self, inputs):
loc_outputs = ()
cls_outputs = ()
for i in range(len(self.multi_loc_layers)):
loc_outputs += (self.multi_loc_layers[i](inputs[i]),)
cls_outputs += (self.multi_cls_layers[i](inputs[i]),)
return self.flatten_concat(loc_outputs), self.flatten_concat(cls_outputs)
class WeightSharedMultiBox(nn.Cell):
"""
Weight shared Multi-box conv layers. Each multi-box layer contains class conf scores and localization predictions.
All box predictors shares the same conv weight in different features.
Args:
config (dict): The default config of SSD.
loc_cls_shared_addition(bool): Whether the location predictor and classifier prediction share the
same addition layer.
Returns:
Tensor, localization predictions.
Tensor, class conf scores.
"""
def __init__(self, args, loc_cls_shared_addition=False):
super(WeightSharedMultiBox, self).__init__()
num_classes = args.num_classes
out_channels = args.extras_out_channels[0]
num_default = args.num_default[0]
num_features = len(args.feature_size)
num_addition_layers = args.num_addition_layers
self.loc_cls_shared_addition = loc_cls_shared_addition
if not loc_cls_shared_addition:
loc_convs = [_conv2d(out_channels, out_channels, 3, 1) for x in range(num_addition_layers)]
cls_convs = [_conv2d(out_channels, out_channels, 3, 1) for x in range(num_addition_layers)]
addition_loc_layer_list = []
addition_cls_layer_list = []
for _ in range(num_features):
addition_loc_layer = [
ConvBNReLU(out_channels, out_channels, 3, 1, 1, loc_convs[x]) for x in range(num_addition_layers)
]
addition_cls_layer = [
ConvBNReLU(out_channels, out_channels, 3, 1, 1, cls_convs[x]) for x in range(num_addition_layers)
]
addition_loc_layer_list.append(nn.SequentialCell(addition_loc_layer))
addition_cls_layer_list.append(nn.SequentialCell(addition_cls_layer))
self.addition_layer_loc = nn.CellList(addition_loc_layer_list)
self.addition_layer_cls = nn.CellList(addition_cls_layer_list)
else:
convs = [_conv2d(out_channels, out_channels, 3, 1) for x in range(num_addition_layers)]
addition_layer_list = []
for _ in range(num_features):
addition_layers = [
ConvBNReLU(out_channels, out_channels, 3, 1, 1, convs[x]) for x in range(num_addition_layers)
]
addition_layer_list.append(nn.SequentialCell(addition_layers))
self.addition_layer = nn.SequentialCell(addition_layer_list)
loc_layers = [_conv2d(out_channels, 4 * num_default, kernel_size=3, stride=1, pad_mod="same")]
cls_layers = [_conv2d(out_channels, num_classes * num_default, kernel_size=3, stride=1, pad_mod="same")]
self.loc_layers = nn.SequentialCell(loc_layers)
self.cls_layers = nn.SequentialCell(cls_layers)
self.flatten_concat = FlattenConcat(args)
def construct(self, inputs):
loc_outputs = ()
cls_outputs = ()
num_heads = len(inputs)
for i in range(num_heads):
if self.loc_cls_shared_addition:
features = self.addition_layer[i](inputs[i])
loc_outputs += (self.loc_layers(features),)
cls_outputs += (self.cls_layers(features),)
else:
features = self.addition_layer_loc[i](inputs[i])
loc_outputs += (self.loc_layers(features),)
features = self.addition_layer_cls[i](inputs[i])
cls_outputs += (self.cls_layers(features),)
return self.flatten_concat(loc_outputs), self.flatten_concat(cls_outputs)
class SSD(nn.Cell):
"""
SSD300 Network. Default backbone is resnet34.
Args:
backbone (Cell): Backbone Network.
config (dict): The default config of SSD.
Returns:
Tensor, localization predictions.
Tensor, class conf scores.
Examples:backbone
SSD300(backbone=resnet34(num_classes=None),
config=config).
"""
def __init__(self, backbone, args, is_training=True):
super(SSD, self).__init__()
self.backbone_wrapper = backbone_wrapper[args.backbone](backbone, args)
if args.get("use_fpn", False):
self.multi_box = WeightSharedMultiBox(args)
else:
self.multi_box = MultiBox(args)
self.is_training = is_training
if not is_training:
self.activation = ops.Sigmoid()
self._initialize_weights()
def _initialize_weights(self) -> None:
params = self.multi_box.trainable_params()
for p in params:
if "beta" not in p.name and "gamma" not in p.name and "bias" not in p.name:
p.set_data(initializer(TruncatedNormal(0.02), p.data.shape, p.data.dtype))
def construct(self, x):
multi_feature = self.backbone_wrapper(x)
pred_loc, pred_label = self.multi_box(multi_feature)
if not self.is_training:
pred_label = self.activation(pred_label)
pred_loc = ops.cast(pred_loc, ms.float32)
pred_label = ops.cast(pred_label, ms.float32)
return pred_loc, pred_label
class SigmoidFocalClassificationLoss(nn.Cell):
""" "
Sigmoid focal-loss for classification.
Args:
gamma (float): Hyper-parameter to balance the easy and hard examples. Default: 2.0
alpha (float): Hyper-parameter to balance the positive and negative example. Default: 0.25
Returns:
Tensor, the focal loss.
"""
def __init__(self, gamma=2.0, alpha=0.25):
super(SigmoidFocalClassificationLoss, self).__init__()
self.sigmiod_cross_entropy = ops.SigmoidCrossEntropyWithLogits()
self.sigmoid = ops.Sigmoid()
self.pow = ops.Pow()
self.onehot = ops.OneHot()
self.on_value = Tensor(1.0, ms.float32)
self.off_value = Tensor(0.0, ms.float32)
self.gamma = gamma
self.alpha = alpha
def construct(self, logits, label):
label = self.onehot(label, ops.shape(logits)[-1], self.on_value, self.off_value)
sigmiod_cross_entropy = self.sigmiod_cross_entropy(logits, label)
sigmoid = self.sigmoid(logits)
label = ops.cast(label, ms.float32)
p_t = label * sigmoid + (1 - label) * (1 - sigmoid)
modulating_factor = self.pow(1 - p_t, self.gamma)
alpha_weight_factor = label * self.alpha + (1 - label) * (1 - self.alpha)
focal_loss = modulating_factor * alpha_weight_factor * sigmiod_cross_entropy
return focal_loss
class SSDWithLossCell(nn.Cell):
""" "
Provide SSD training loss through network.
Args:
network (Cell): The training network.
config (dict): SSD config.
Returns:
Tensor, the loss of the network.
"""
def __init__(self, network, args):
super(SSDWithLossCell, self).__init__(auto_prefix=False)
self.network = network
self.less = ops.Less()
self.tile = ops.Tile()
self.reduce_sum = ops.ReduceSum()
self.expand_dims = ops.ExpandDims()
self.class_loss = SigmoidFocalClassificationLoss(args.gamma, args.alpha)
self.loc_loss = nn.SmoothL1Loss()
def construct(self, x, gt_loc, gt_label, num_matched_boxes):
pred_loc, pred_label = self.network(x)
mask = ops.cast(self.less(0, gt_label), ms.float32)
num_matched_boxes = self.reduce_sum(ops.cast(num_matched_boxes, ms.float32))
# Localization Loss
mask_loc = self.tile(self.expand_dims(mask, -1), (1, 1, 4))
smooth_l1 = self.loc_loss(pred_loc, gt_loc) * mask_loc
loss_loc = self.reduce_sum(self.reduce_sum(smooth_l1, -1), -1)
# Classification Loss
loss_cls = self.class_loss(pred_label, gt_label)
loss_cls = self.reduce_sum(loss_cls, (1, 2))
return self.reduce_sum((loss_cls + loss_loc) / num_matched_boxes)
grad_scale = ops.MultitypeFuncGraph("grad_scale")
@grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
return grad * ops.Reciprocal()(scale)
class TrainingWrapper(nn.Cell):
"""
Encapsulation class of SSD network training.
Append an optimizer to the training network after that the construct
function can be called to create the backward graph.
Args:
network (Cell): The training network. Note that loss function should have been added.
optimizer (Optimizer): Optimizer for updating the weights.
sens (Number): The adjust parameter. Default: 1.0.
use_global_nrom(bool): Whether apply global norm before optimizer. Default: False
"""
def __init__(self, network, optimizer, sens=1.0, use_global_norm=False):
super(TrainingWrapper, self).__init__(auto_prefix=False)
self.network = network
self.network.set_grad()
self.weights = ms.ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad = ops.GradOperation(get_by_list=True, sens_param=True)
self.sens = sens
self.reducer_flag = False
self.grad_reducer = None
self.use_global_norm = use_global_norm
self.parallel_mode = ms.get_auto_parallel_context("parallel_mode")
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
self.reducer_flag = True
if self.reducer_flag:
mean = ms.get_auto_parallel_context("gradients_mean")
if auto_parallel_context().get_device_num_is_set():
degree = ms.get_auto_parallel_context("device_num")
else:
degree = get_group_size()
self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
self.hyper_map = ops.HyperMap()
def construct(self, *args):
weights = self.weights
loss = self.network(*args)
sens = ops.Fill()(ops.DType()(loss), ops.Shape()(loss), self.sens)
grads = self.grad(self.network, weights)(*args, sens)
if self.reducer_flag:
# apply grad reducer on grads
grads = self.grad_reducer(grads)
if self.use_global_norm:
grads = self.hyper_map(ops.partial(grad_scale, ops.scalar_to_tensor(self.sens)), grads)
grads = ops.clip_by_global_norm(grads)
self.optimizer(grads)
return loss
class SSDInferWithDecoder(nn.Cell):
"""
SSD Infer wrapper to decode the bbox locations.
Args:
network (Cell): the origin ssd infer network without bbox decoder.
default_boxes (Tensor): the default_boxes from anchor generator
config (dict): ssd config
Returns:
Tensor, the locations for bbox after decoder representing (y0,x0,y1,x1)
Tensor, the prediction labels.
"""
def __init__(self, network, args):
super(SSDInferWithDecoder, self).__init__(auto_prefix=False)
self.network = network
if hasattr(args, "use_anchor_generator") and args.use_anchor_generator:
self.default_boxes, _ = GridAnchorGenerator(args.image_size, 4, 2, [1.0, 2.0, 0.5]).generate_multi_levels(
args.steps
)
self.default_boxes = Tensor(self.default_boxes)
else:
self.default_boxes = Tensor(GeneratDefaultBoxes(args).default_boxes)
self.prior_scaling_xy = args.prior_scaling[0]
self.prior_scaling_wh = args.prior_scaling[1]
def construct(self, x):
pred_loc, pred_label = self.network(x)
default_bbox_xy = self.default_boxes[..., :2]
default_bbox_wh = self.default_boxes[..., 2:]
pred_xy = pred_loc[..., :2] * self.prior_scaling_xy * default_bbox_wh + default_bbox_xy
pred_wh = ops.Exp()(pred_loc[..., 2:] * self.prior_scaling_wh) * default_bbox_wh
pred_xy_0 = pred_xy - pred_wh / 2.0
pred_xy_1 = pred_xy + pred_wh / 2.0
pred_xy = ops.Concat(-1)((pred_xy_0, pred_xy_1))
pred_xy = ops.Maximum()(pred_xy, 0)
pred_xy = ops.Minimum()(pred_xy, 1)
return pred_xy, pred_label
def get_ssd_trainer(model, optimizer, args):
return ms.Model(TrainingWrapper(model, optimizer, args.loss_scale))