-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathrun_eval_mrclam.m
98 lines (90 loc) · 4.9 KB
/
run_eval_mrclam.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
close all;
clear all;
disp('== Localization Evaluatioin (with MRCLAM Dataset) for Triangulation Toolbox ==');
% Configure experiments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
config.dataFile = ... % A list of data files
{ ...
'dataset_mrclam/mrclam1.mat'; ...
'dataset_mrclam/mrclam2.mat'; ...
'dataset_mrclam/mrclam3.mat'; ...
'dataset_mrclam/mrclam4.mat'; ...
'dataset_mrclam/mrclam5.mat'; ...
'dataset_mrclam/mrclam6.mat'; ...
'dataset_mrclam/mrclam7.mat'; ...
'dataset_mrclam/mrclam8.mat'; ...
'dataset_mrclam/mrclam9.mat'; ...
};
config.pose = [];
config.algorithm = ... % Description of localization algorithms
{ ...
% #, Dim, Name, Local. Function, Observation Function, Min. N, Valid, Line Sytle; ...
1, 2, 'Sayed05-TOA2D',@localize2d_sayed05_toa, @observe_distance, 3, [1 1 0 0 0 0], 'kx:'; ...
2, 2, 'Sayed05-TDOA', @localize2d_sayed05_tdoa, @observe_distance_relative,3, [1 1 0 0 0 0], 'k--'; ...
3, 2, 'Betke97', @localize2d_betke97, @observe_bearing, 3, [1 1 0 0 0 1], 'gd-'; ...
4, 2, 'Shim02-Alg', @localize2d_shimshoni02_algebraic, @observe_bearing, 3, [1 1 0 0 0 1], 'b--'; ...
5, 2, 'Shim02-Imp', @localize2d_shimshoni02_improved, @observe_bearing, 3, [1 1 0 0 0 1], 'b+-'; ...
6, 2, 'Se05', @localize2d_se05, @observe_displacement, 2, [1 1 0 0 0 1], 'rs-'; ...
7, 2, 'Sayed05-AOA', @localize2d_sayed05_aoa, @observe_displacement, 2, [1 1 0 0 0 1], 'ko-'; ...
};
config.matFile = 'run_eval_mrclam.mat';
criteria.name = {'Position Error [m]', 'Orientation Error [deg]', ...
'Computing Time [msec]', 'Number of Failures'}; % Name of evaluation criteria
criteria.repr = {@median, @median, @median, @sum}; % Functions for calculating representive values
% (e.g. mean, median, std, and sum)
criteria.format = {'%.6f', '%.3f', '%.6f', '%d'}; % Format for printing text
% Perform experiments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
config.algoDims = 2;
config.algoName = 3;
config.algoEstm = 4;
config.algoObsv = 5;
config.algoMinN = 6;
config.algoVald = 7;
config.algoLine = 8;
config.algoSelM = 1:size(config.algorithm,1);
for m = 1:size(config.algorithm,1)
obsFuncName{m} = func2str(config.algorithm{m,config.algoObsv});
end
record.perf{1,1} = [];
record.pose{1,1} = [];
for d = 1:size(config.dataFile,1)
% 1. Read each data file which contains landmarks, ground truths, and measurements
data = load(config.dataFile{d});
for t = 1:size(data.groundtruth,1)
truth = [data.groundtruth(t,2:3), zeros(1,3), data.groundtruth(t,4)];
measure = [data.measurement(data.measurement(:,1) == t,2:end)];
map = [data.landmark(measure(:,1),2:end), zeros(size(measure,1),4)];
set.perf = zeros(1,4,size(config.algorithm,1));
set.pose = zeros(1,6,size(config.algorithm,1));
for m = config.algoSelM
% 2. Rearrange measurements for each algorithm
if isequal(obsFuncName{m}, 'observe_distance')
obsData = measure(:,2);
elseif isequal(obsFuncName{m}, 'observe_distance_relative')
obsData = measure(:,2);
obsData(2:end) = obsData(2:end) - obsData(1);
elseif isequal(obsFuncName{m}, 'observe_bearing')
obsData = [measure(:,3), zeros(size(measure,1),1)];
elseif isequal(obsFuncName{m}, 'observe_displacement')
obsData = repmat(measure(:,2),1,3) .* ...
[cos(measure(:,3)), sin(measure(:,3)), zeros(size(measure,1),1)];
else
error(['This dataset cannot be applied to the algorithm #', num2str(m), '!']);
end
% 3. Perform each algorithm
tic;
[pose, valid] = feval(config.algorithm{m,config.algoEstm}, obsData, map);
elapse = toc * 1000; % [sec] to [msec]
set.perf(1,1,m) = error_position(truth(1:3), pose(1:3));
set.perf(1,2,m) = tran_rad2deg(error_orientation(truth(4:6), pose(4:6))); % [rad] to [deg]
set.perf(1,3,m) = elapse;
set.perf(1,4,m) = ~isequal(valid, config.algorithm{m,config.algoVald});
set.pose(1,:,m) = pose;
end
record.perf{1,1} = [record.perf{1,1}; set.perf];
record.pose{1,1} = [record.pose{1,1}; set.pose];
end
disp([' * Experiment on dataset #', num2str(d), ' is complete.']);
end
% 4. Save experimental results
save(config.matFile, 'config', 'criteria', 'record');
% To visualize the result, please use the script, 'run_draw_distribution', with 'target.ex = 1' and 'target.v = 1'.