-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCircuitGeneration.v
430 lines (386 loc) · 20 KB
/
CircuitGeneration.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
(*! Circuits | Compilation of lowered ASTs into RTL circuits !*)
Require Import Koika.Syntax Koika.LoweredSyntax Koika.LoweredSyntaxFunctions.
Require Export Koika.CircuitSemantics Koika.Common Koika.Environments.
Import PrimTyped CircuitSignatures.
Section CircuitCompilation.
Context {pos_t var_t rule_name_t reg_t ext_fn_t: Type}.
Context {CR: reg_t -> nat}.
Context {CSigma: ext_fn_t -> CExternalSignature}.
Context {REnv: Env reg_t}.
Context {Show_var_t : Show var_t}.
Context {Show_rule_name_t : Show rule_name_t}.
Notation circuit' rwdata := (circuit (rule_name_t := rule_name_t) (rwdata := rwdata) CR CSigma).
Inductive rwdata {sz: nat} :=
{ read0: circuit' (@rwdata) 1;
read1: circuit' (@rwdata) 1;
write0: circuit' (@rwdata) 1;
write1: circuit' (@rwdata) 1;
data0: circuit' (@rwdata) sz;
data1: circuit' (@rwdata) sz }.
Notation circuit := (circuit' (@rwdata)).
Context (opt: forall {sz}, circuit sz -> circuit sz).
Context (cr: REnv.(env_t) (fun reg => circuit (CR reg))).
(* Notation CAnnot an c := (match an : string with _ => c end). *)
Notation COpt c := (opt _ c).
Notation CAnnotOpt an c := (CAnnot an (COpt c)).
Declare Scope circuit.
Notation "f [ arg ]` an `" :=
(CAnnotOpt an (CExternal f arg (CConst Ob)))
(at level 99, arg at level 99, format "f [ arg ]` an `") : circuit.
Notation "f [ arg1 ',' arg2 ]` an `" :=
(CAnnotOpt an (CExternal f arg1 arg2))
(at level 99, arg1 at level 99, arg2 at level 99,
format "f [ arg1 ',' arg2 ]` an `") : circuit.
Notation "$` an ` c" :=
(CAnnotOpt an (CConst c))
(at level 75, format "$` an ` c") : circuit.
Notation "!` an ` c" :=
(CAnnotOpt an (CNot c))
(at level 30, right associativity, format "!` an ` c") : circuit.
Notation "c1 &&` an ` c2" :=
(CAnnotOpt an (CAnd c1 c2))
(at level 40, left associativity) : circuit.
Notation "c1 ||` an ` c2" :=
(CAnnotOpt an (COr c1 c2))
(at level 50, left associativity) : circuit.
Notation "c1 ==>` an ` c2" :=
(CAnnotOpt an (COr (CAnnotOpt "impl" (CNot c1)) c2))
(at level 70, no associativity) : circuit.
Notation CUnopOpt f c := (COpt (CUnop f c)).
Notation CBinopOpt f c1 c2 := (COpt (CBinop f c1 c2)).
Notation CMuxAnnotOpt an s c1 c2 := (CAnnotOpt an (CMux s c1 c2)).
Local Open Scope circuit.
Definition readRegisters : forall idx: reg_t, circuit (CR idx) :=
fun idx => CReadRegister (CR := CR) (CSigma := CSigma) idx.
Definition rwset :=
REnv.(env_t) (fun reg => @rwdata (CR reg)).
Record rwcircuit :=
{ canFire: circuit 1;
regs: rwset }.
Record action_circuit {sz} :=
{ erwc: rwcircuit;
retVal: circuit sz }.
Definition scheduler_circuit :=
rwset.
Definition ccontext (sig: lsig) :=
context (fun sz => circuit sz) sig.
Definition mux_rwdata {sz} an (cond: circuit 1) (tReg fReg: @rwdata sz) :=
{| read0 := CMuxAnnotOpt an cond (tReg.(read0)) (fReg.(read0));
read1 := CMuxAnnotOpt an cond (tReg.(read1)) (fReg.(read1));
write0 := CMuxAnnotOpt an cond (tReg.(write0)) (fReg.(write0));
write1 := CMuxAnnotOpt an cond (tReg.(write1)) (fReg.(write1));
data0 := CMuxAnnotOpt an cond (tReg.(data0)) (fReg.(data0));
data1 := CMuxAnnotOpt an cond (data1 tReg) (data1 fReg) |}.
Definition mux_rwsets an (cond: circuit 1) (tRegs fRegs: rwset) :=
map2 REnv (fun k treg freg => mux_rwdata an cond treg freg)
tRegs fRegs.
Fixpoint mux_ccontext {sig} (cond: circuit 1) (ctxT: ccontext sig) (ctxF: ccontext sig) : ccontext sig.
destruct sig as [ | sz]; cbn.
- exact CtxEmpty.
- apply (CtxCons sz (CMuxAnnotOpt "mux_ccontext" cond (chd ctxT) (chd ctxF))
(mux_ccontext _ cond (ctl ctxT) (ctl ctxF))).
Defined.
Section Action.
Lemma mul_1_r :
forall n : nat, n * 1 = n.
Proof. induction n; simpl; congruence. Defined.
Definition compile_unop (fn: fbits1) (a: circuit (CSigma1 fn).(arg1Sig)):
circuit (CSigma1 fn).(retSig) :=
let cArg1 fn := circuit (CSigma1 fn).(arg1Sig) in
let cRet fn := circuit (CSigma1 fn).(retSig) in
let c :=
match fn return circuit (CSigma1 fn).(arg1Sig) ->
circuit (CSigma1 fn).(retSig) ->
circuit (CSigma1 fn).(retSig) with
| Not _ => fun a c => c
| Repeat _ _ => fun a c => c
| SExt sz width => fun a c =>
ltac:(subst cRet; simpl; rewrite <- vect_extend_end_cast, <- (mul_1_r (width - sz));
exact (CBinopOpt (Concat _ _)
(CUnopOpt (Repeat 1 (width - sz))
(CBinopOpt (Sel sz) a (CConst (Bits.of_nat (log2 sz) (pred sz)))))
a))
| ZExtL sz width => fun a c =>
ltac:(subst cRet; simpl; rewrite <- vect_extend_end_cast;
exact (CBinopOpt (Concat _ _) (CConst Bits.zero) a))
| ZExtR sz width => fun a c =>
ltac:(subst cRet; simpl; rewrite <- vect_extend_beginning_cast;
exact (CBinopOpt (Concat _ _) a (CConst Bits.zero)))
| Slice sz offset width => fun a c => c
| Lowered (IgnoreBits _) => fun a c => CConst Ob
| Lowered (DisplayBits _) => fun a c => CConst Ob
end a (CUnop fn a) in
COpt c.
Lemma lt_plus_minus_r :
forall n m : nat, n < m -> n + (m - n) = m.
Proof.
auto using le_plus_minus_r, Nat.lt_le_incl.
Defined.
Definition slice_subst_macro {sz} offset {width}
(c1: circuit sz) (c2: circuit width) :=
match le_gt_dec offset sz with
| left pr =>
rew (le_plus_minus_r _ _ pr) in
(CBinopOpt (Concat _ _)
(match le_gt_dec width (sz - offset) with
| left pr =>
rew (le_plus_minus_r _ _ pr) in
(CBinopOpt (Concat _ _) (CUnopOpt (Slice _ (offset + width) (sz - offset - width)) c1) c2)
| right _ =>
CUnopOpt (Slice _ 0 (sz - offset)) c2
end)
(CUnopOpt (Slice sz 0 offset) c1))
| right _ => c1
end.
Definition compile_binop (fn: fbits2)
(c1: circuit (CSigma2 fn).(arg1Sig))
(c2: circuit (CSigma2 fn).(arg2Sig)):
circuit (CSigma2 fn).(retSig) :=
let cArg1 fn := circuit (CSigma2 fn).(arg1Sig) in
let cArg2 fn := circuit (CSigma2 fn).(arg2Sig) in
let cRet fn := circuit (CSigma2 fn).(retSig) in
let c :=
match fn return circuit (CSigma2 fn).(arg1Sig) ->
circuit (CSigma2 fn).(arg2Sig) ->
circuit (CSigma2 fn).(retSig) ->
circuit (CSigma2 fn).(retSig) with
| SliceSubst sz offset width => fun c1 c2 c =>
slice_subst_macro offset c1 c2
| _ => fun c1 c2 c => c
end c1 c2 (CBinop fn c1 c2) in
COpt c.
Fixpoint compile_action
{sig: lsig}
{sz}
(Gamma: ccontext sig)
(a: action pos_t var_t CR CSigma sig sz)
(clog: rwcircuit):
@action_circuit sz * (ccontext sig) :=
match a in action _ _ _ _ ts sz return ccontext ts -> @action_circuit sz * ccontext ts with
| Fail sz => fun Gamma =>
({| retVal := $`"fail"`Bits.zeroes sz; (* LATER: Question mark here *)
erwc := {| canFire := $`"fail_canFire"` Ob~0;
regs := clog.(regs) |} |},
Gamma)
| @Var _ _ _ _ _ _ _ k _ m => fun Gamma =>
({| retVal := CAnnotOpt (String.append "var_" (show k)) (cassoc m Gamma);
erwc := clog |},
Gamma)
| Const cst => fun Gamma =>
({| retVal := (CConst cst);
erwc := clog |},
Gamma)
| Seq r1 r2 => fun Gamma =>
let (cex, Gamma) := (compile_action Gamma r1 clog) in
compile_action Gamma r2 cex.(erwc)
| @Assign _ _ _ _ _ _ _ k sz m ex => fun Gamma =>
let (cex, Gamma) := compile_action Gamma ex clog in
({| retVal := $`"assign_retVal"`Bits.nil;
erwc := cex.(erwc) |},
creplace m cex.(retVal) Gamma)
| @Bind _ _ _ _ _ _ sig var sz sz' ex body => fun Gamma =>
let (ex, Gamma) := compile_action Gamma ex clog in
let (ex, Gamma) := compile_action (CtxCons sz ex.(retVal) Gamma) body ex.(erwc) in
(ex, ctl Gamma)
| If cond tbranch fbranch => fun Gamma =>
let (cond, Gamma) := compile_action Gamma cond clog in
let (tbranch, Gamma_t) := compile_action Gamma tbranch cond.(erwc) in
let (fbranch, Gamma_f) := compile_action Gamma fbranch cond.(erwc) in
let cond_val := CAnnotOpt "cond" cond.(retVal) in
({| retVal := CMuxAnnotOpt "if_retVal" cond_val tbranch.(retVal) fbranch.(retVal);
erwc := {| canFire := CMuxAnnotOpt "if_canFire" cond_val tbranch.(erwc).(canFire) fbranch.(erwc).(canFire);
regs := mux_rwsets "if_mux" cond_val tbranch.(erwc).(regs) fbranch.(erwc).(regs) |} |},
mux_ccontext cond_val Gamma_t Gamma_f)
| Read P0 idx => fun Gamma =>
let reg := REnv.(getenv) clog.(regs) idx in
({| retVal := REnv.(getenv) cr idx;
erwc := {| canFire := clog.(canFire);
regs := REnv.(putenv) clog.(regs) idx {| read0 := $`"read0"` Ob~1;
(* Unchanged *)
read1 := reg.(read1);
write0 := reg.(write0);
write1 := reg.(write1);
data0 := reg.(data0);
data1 := reg.(data1) |} |} |},
Gamma)
| Read P1 idx => fun Gamma =>
let reg := REnv.(getenv) clog.(regs) idx in
({| retVal := reg.(data0);
erwc := {| canFire := clog.(canFire);
regs := REnv.(putenv) clog.(regs) idx {| read1 := $`"read1"` Ob~1;
(* Unchanged *)
read0 := reg.(read0);
write0 := reg.(write0);
write1 := reg.(write1);
data0 := reg.(data0);
data1 := reg.(data1) |} |} |},
Gamma)
| Write P0 idx val => fun Gamma =>
let (val, Gamma) := compile_action Gamma val clog in
let reg := REnv.(getenv) val.(erwc).(regs) idx in
({| retVal := $`"write_retVal"`Bits.nil;
erwc := {| canFire := (val.(erwc).(canFire) &&`"write0_canFire"`
(!`"no_read1"` reg.(read1) &&`"write0_canFire"`
!`"no_write0"` reg.(write0) &&`"write0_canFire"`
!`"no_write1"` reg.(write1)));
regs := REnv.(putenv) val.(erwc).(regs) idx {| write0 := $`"write0"` (Ob~1);
data0 := val.(retVal);
(* Unchanged *)
read0 := reg.(read0);
read1 := reg.(read1);
write1 := reg.(write1);
data1 := reg.(data1) |} |} |},
Gamma)
| Write P1 idx val => fun Gamma =>
let (val, Gamma) := compile_action Gamma val clog in
let reg := REnv.(getenv) val.(erwc).(regs) idx in
({| retVal := $`"write_retVal"`Bits.nil;
erwc := {| canFire := val.(erwc).(canFire) &&`"write1_canFire"` !`"no_write1"` reg.(write1);
regs := REnv.(putenv) val.(erwc).(regs) idx {| write1 := $`"write1"` (Ob~1);
data1 := val.(retVal);
(* Unchanged *)
read0 := reg.(read0);
read1 := reg.(read1);
write0 := reg.(write0);
data0 := reg.(data0) |} |} |},
Gamma)
| Unop fn a => fun Gamma =>
let (a, Gamma) := compile_action Gamma a clog in
({| retVal := compile_unop fn a.(retVal);
erwc := a.(erwc) |},
Gamma)
| Binop fn a1 a2 => fun Gamma =>
let (a1, Gamma) := compile_action Gamma a1 clog in
let (a2, Gamma) := compile_action Gamma a2 a1.(erwc) in
({| retVal := compile_binop fn a1.(retVal) a2.(retVal);
erwc := a2.(erwc) |},
Gamma)
| ExternalCall fn a => fun Gamma =>
let (a, Gamma) := compile_action Gamma a clog in
({| retVal := CExternal fn a.(retVal);
erwc := a.(erwc) |},
Gamma)
| APos _ a => fun Gamma =>
compile_action Gamma a clog
end Gamma.
End Action.
Definition adapter (cs: scheduler_circuit) : rwcircuit :=
{| canFire := $`"cF_init"` Ob~1;
regs := map REnv (fun k reg => {| read0 := $`"init_no_read0"` Ob~0;
read1 := $`"init_no_read1"` Ob~0;
write0 := $`"init_no_write0"` Ob~0;
write1 := $`"init_no_write1"` Ob~0;
data0 := reg.(data0);
data1 := reg.(data1) |})
cs |}.
Definition willFire_of_canFire'_read0 {sz} (ruleReg inReg: @rwdata sz) :=
(ruleReg.(read0)) ==>`"read0_willFire_of_canFire"`
(!`"read0_willFire_no_writes"` ((inReg.(write0)) ||`""` (inReg.(write1)))).
Definition willFire_of_canFire'_write0 {sz} (ruleReg inReg: @rwdata sz) :=
(ruleReg.(write0)) ==>`"write0_willFire_of_canFire"`
(!`"write0_willFire_no_writes_no_read1"`
((inReg.(write0)) ||`""` (inReg.(write1)) ||`""` (inReg.(read1)))).
Definition willFire_of_canFire'_rw1 {sz} (ruleReg inReg: @rwdata sz) :=
((ruleReg.(read1)) ||`""` (ruleReg.(write1))) ==>`"read_write1_willFire_of_canFire"`
(!`"read_write1_willFire_no_write1"` (inReg.(write1))).
Definition willFire_of_canFire' {sz} (ruleReg inReg: @rwdata sz) :=
(willFire_of_canFire'_read0 ruleReg inReg) &&`""`
(willFire_of_canFire'_write0 ruleReg inReg) &&`""`
(willFire_of_canFire'_rw1 ruleReg inReg).
Definition willFire_of_canFire rl_name cRule cInput : circuit 1 :=
let wf := String.append "wF_" (show rl_name) in
let cf := String.append "cF_" (show rl_name) in
CAnnot wf (fold_right
REnv
(fun k '(ruleReg, inReg) acc =>
acc &&`wf` willFire_of_canFire' ruleReg inReg)
(zip REnv cRule.(regs) cInput)
(CAnnot cf cRule.(canFire))).
Arguments willFire_of_canFire' : simpl never.
Definition update_accumulated_rwset (rl_rwset acc: rwset) :=
let an := "compute_accumulated_rwset" in
map2 REnv (fun _ ruleReg accReg =>
{| read0 := (ruleReg.(read0)) ||`an` (accReg.(read0));
read1 := (ruleReg.(read1)) ||`an` (accReg.(read1));
write0 := (ruleReg.(write0)) ||`an` (accReg.(write0));
write1 := (ruleReg.(write1)) ||`an` (accReg.(write1));
data0 := (ruleReg.(data0));
data1 := (ruleReg.(data1)) |})
rl_rwset acc.
Definition bundleref_wrap_rwdata rl rs bundle (r: reg_t) (ruleReg: @rwdata (CR r))
: @rwdata (CR r) :=
let ft := REnv.(finite_keys) in
if List.find (fun r' => beq_dec (EQ := EqDec_FiniteType) r r') rs then
{| read0 := CBundleRef rl rs bundle (rwcircuit_rwdata r rwdata_r0) (ruleReg.(read0));
read1 := CBundleRef rl rs bundle (rwcircuit_rwdata r rwdata_r1) (ruleReg.(read1));
write0 := CBundleRef rl rs bundle (rwcircuit_rwdata r rwdata_w0) (ruleReg.(write0));
write1 := CBundleRef rl rs bundle (rwcircuit_rwdata r rwdata_w1) (ruleReg.(write1));
data0 := CBundleRef rl rs bundle (rwcircuit_rwdata r rwdata_data0) (ruleReg.(data0));
data1 := CBundleRef rl rs bundle (rwcircuit_rwdata r rwdata_data1) (ruleReg.(data1)) |}
else ruleReg.
Definition bundleref_wrap_rwset rl rs bundle (rws: rwset) :=
map REnv (bundleref_wrap_rwdata rl rs bundle) rws.
Definition bundleref_wrap_erwc rl rs bundle erwc :=
{| canFire := CBundleRef rl rs bundle rwcircuit_canfire erwc.(canFire);
regs := bundleref_wrap_rwset rl rs bundle erwc.(regs) |}.
Definition bundleref_wrap_action_circuit
{sz} (rs: list reg_t)
(input: rwset) (rl: @action_circuit sz) (rl_name: rule_name_t)
: @action_circuit sz :=
let bundle := ccreate rs (fun r _ => REnv.(getenv) input r) in
{| erwc := bundleref_wrap_erwc rl_name rs bundle rl.(erwc);
retVal := rl.(retVal) |}.
Context (rules: rule_name_t -> rule pos_t var_t CR CSigma).
Context (external: rule_name_t -> bool).
Fixpoint compile_scheduler_circuit
(s: scheduler pos_t rule_name_t)
(input: scheduler_circuit):
scheduler_circuit :=
let compile_action rl_name :=
let rule := rules rl_name in
let ft := REnv.(finite_keys) in
let rs := action_registers (EQ := EqDec_FiniteType) rule in
let (rl, _) := compile_action CtxEmpty rule (adapter input) in
let rl := if external rl_name then bundleref_wrap_action_circuit rs input rl rl_name else rl in
let acc := update_accumulated_rwset rl.(erwc).(regs) input in
(rl, acc) in
match s with
| Done =>
input
| Cons rl_name s =>
let (rl, acc) := compile_action rl_name in
let will_fire := willFire_of_canFire rl_name rl.(erwc) input in
let input := mux_rwsets (show rl_name ++ "_out") will_fire acc input in
compile_scheduler_circuit s input
| Try rl_name st sf =>
let (rl, acc) := compile_action rl_name in
let st := compile_scheduler_circuit st acc in
let sf := compile_scheduler_circuit sf input in
let will_fire := willFire_of_canFire rl_name rl.(erwc) input in
mux_rwsets "mux_subschedulers" will_fire st sf
| SPos _ s =>
compile_scheduler_circuit s input
end.
Definition commit_rwdata {sz} (reg: @rwdata sz) : circuit sz :=
CMuxAnnotOpt "commit_write1" (reg.(write1)) (reg.(data1)) (reg.(data0)).
Definition init_scheduler_rwdata idx : rwdata :=
{| read0 := $`"sched_init_no_read0"` Ob~0;
read1 := $`"sched_init_no_read1"` Ob~0;
write0 := $`"sched_init_no_write0"` Ob~0;
write1 := $`"sched_init_no_write1"` Ob~0;
data0 := CAnnotOpt "sched_init_data0_is_reg" (REnv.(getenv) cr idx);
data1 := CAnnotOpt "sched_init_no_data1" (CConst Bits.zero) |}.
Definition init_scheduler_circuit : scheduler_circuit :=
REnv.(create) init_scheduler_rwdata.
Definition register_update_circuitry :=
REnv.(env_t) (fun reg => circuit (CR reg)).
Definition compile_scheduler' (s: scheduler pos_t rule_name_t)
: register_update_circuitry :=
let s := compile_scheduler_circuit s init_scheduler_circuit in
map REnv (fun k r => commit_rwdata r) s.
End CircuitCompilation.
Arguments readRegisters {rule_name_t reg_t ext_fn_t} CR CSigma idx : assert.
Arguments rwdata {rule_name_t reg_t ext_fn_t} CR CSigma sz : assert.
Arguments action_circuit {rule_name_t reg_t ext_fn_t} CR CSigma REnv sz : assert.
Arguments scheduler_circuit {rule_name_t reg_t ext_fn_t} CR CSigma REnv : assert.
Arguments register_update_circuitry rule_name_t {reg_t ext_fn_t} CR CSigma REnv : assert.