-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathCommon.v
497 lines (419 loc) · 13.2 KB
/
Common.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
(*! Utilities | Shared utilities !*)
Require Export Coq.micromega.Lia.
Require Export Coq.Arith.Arith.
Require Export Coq.Lists.List Coq.Bool.Bool Coq.Strings.String.
Require Export Koika.EqDec Koika.Vect Koika.FiniteType Koika.Show.
Export EqNotations.
Export ListNotations.
Global Open Scope string_scope.
Global Open Scope list_scope.
Ltac bool_step :=
match goal with
| [ H: _ && _ = true |- _ ] => rewrite andb_true_iff in H
| [ H: _ && _ = false |- _ ] => rewrite andb_false_iff in H
| [ H: _ || _ = true |- _ ] => rewrite orb_true_iff in H
| [ H: _ || _ = false |- _ ] => rewrite orb_false_iff in H
| [ H: negb _ = true |- _ ] => rewrite negb_true_iff in H
| [ H: negb _ = false |- _ ] => rewrite negb_false_iff in H
| [ H: forallb _ (_ ++ _) = _ |- _ ] => rewrite forallb_app in H
end.
Lemma Some_inj : forall {T} (x y: T), Some x = Some y -> x = y.
Proof.
congruence.
Qed.
Lemma pair_inj : forall {T U} (t1: T) (u1: U) (t2: T) (u2: U),
(t1, u1) = (t2, u2) -> t1 = t2 /\ u1 = u2.
Proof.
inversion 1. auto.
Qed.
Ltac cleanup_step :=
match goal with
| _ => discriminate
| _ => progress (subst; cbn)
| [ H: Some _ = Some _ |- _ ] =>
apply Some_inj in H
| [ H: (_, _) = (_, _) |- _ ] =>
apply pair_inj in H
| [ H: _ /\ _ |- _ ] =>
destruct H
end.
Ltac destruct_match :=
match goal with
| [ |- context[match ?x with _ => _ end] ] =>
destruct x eqn:?
end.
(** find the head of the given expression **)
Ltac head expr :=
match expr with
| ?f _ => head f
| _ => expr
end.
Ltac head_hnf expr := let expr' := eval hnf in expr in head expr'.
Ltac rewrite_all_hypotheses :=
repeat match goal with
| [ H: ?x = ?y |- _ ] => rewrite H
end.
Ltac setoid_rewrite_all_hypotheses :=
repeat match goal with
| [ H: ?x = ?y |- _ ] => setoid_rewrite H
end.
(** Fails if x is equal to v. Can work for hypotheses **)
Ltac assert_neq x v :=
tryif (let _ := (constr:(eq_refl x : x = v)) in idtac) then fail else idtac.
(** Rewrite using setoid_rewrite the hypothesis in all
other hypotheses, as well as in the goal. **)
Tactic Notation "setoid_rewrite_in_all" constr(Hx) :=
repeat match goal with
| _ =>
progress (setoid_rewrite Hx)
| [ H: _ |- _ ] =>
assert_neq Hx H;
progress (setoid_rewrite Hx in H)
end.
Tactic Notation "setoid_rewrite_in_all" "<-" constr(Hx) :=
repeat match goal with
| _ =>
progress (setoid_rewrite <-Hx)
| [ H: _ |- _ ] =>
assert_neq Hx H;
progress (setoid_rewrite <-Hx in H)
end.
Ltac set_fixes :=
repeat match goal with
| [ |- context[?x] ] => is_fix x; set x in *
end.
Inductive DP {A: Type} (a: A) : Prop :=.
Inductive Posed : list Prop -> Prop :=
| AlreadyPosed1 : forall {A} a, Posed [@DP A a]
| AlreadyPosed2 : forall {A1 A2} a1 a2, Posed [@DP A1 a1; @DP A2 a2]
| AlreadyPosed3 : forall {A1 A2 A3} a1 a2 a3, Posed [@DP A1 a1; @DP A2 a2; @DP A3 a3]
| AlreadyPosed4 : forall {A1 A2 A3 A4} a1 a2 a3 a4, Posed [@DP A1 a1; @DP A2 a2; @DP A3 a3; @DP A4 a4].
Tactic Notation "_pose_once" constr(witness) constr(thm) :=
let tw := (type of witness) in
match goal with
| [ H: Posed ?tw' |- _ ] =>
unify tw (Posed tw')
| _ => pose proof thm;
pose proof witness
end.
Tactic Notation "pose_once" constr(thm) :=
progress (let witness := constr:(AlreadyPosed1 thm) in
_pose_once witness thm).
Tactic Notation "pose_once" constr(thm) constr(arg) :=
progress (let witness := constr:(AlreadyPosed2 thm arg) in
_pose_once witness (thm arg)).
Tactic Notation "pose_once" constr(thm) constr(arg) constr(arg') :=
progress (let witness := constr:(AlreadyPosed3 thm arg arg') in
_pose_once witness (thm arg arg')).
Tactic Notation "pose_once" constr(thm) constr(arg) constr(arg') constr(arg'') :=
progress (let witness := constr:(AlreadyPosed4 thm arg arg' arg'') in
_pose_once witness (thm arg arg' arg'')).
Ltac remember_once x :=
match goal with
| [ H: ?v = x |- _ ] =>
is_var v
| _ =>
let Hx := fresh "H" in
remember x eqn:Hx;
setoid_rewrite_in_all <- Hx
end.
Ltac constr_hd c :=
match c with
| ?f ?x => constr_hd f
| ?g => g
end.
Definition and_fst {A B} := fun '(conj a _: and A B) => a.
Definition and_snd {A B} := fun '(conj _ b: and A B) => b.
Fixpoint upto (n: nat) :=
match n with
| O => [0]
| S x => n :: upto x
end.
Notation log2 := Nat.log2_up.
Instance EqDec_FiniteType {T} {FT: FiniteType T} : EqDec T | 3.
Proof.
econstructor; intros.
destruct (PeanoNat.Nat.eq_dec (finite_index t1) (finite_index t2)) as [ ? | Hneq ].
- eauto using finite_index_injective.
- right; intro Habs; apply (f_equal finite_index) in Habs.
contradiction.
Defined.
Definition opt_bind {A B} (o: option A) (f: A -> option B) :=
match o with
| Some x => f x
| None => None
end.
Lemma opt_bind_f_equal {A B} o o' f f':
o = o' ->
(forall a, f a = f' a) ->
@opt_bind A B o f = opt_bind o' f'.
Proof.
intros * -> **; destruct o'; eauto.
Qed.
Notation "'let/opt' var ':=' expr 'in' body" :=
(opt_bind expr (fun var => body)) (at level 200).
Notation "'let/opt2' v1 ',' v2 ':=' expr 'in' body" :=
(opt_bind expr (fun '(v1, v2) => body)) (at level 200).
Notation "'let/opt3' v1 ',' v2 ',' v3 ':=' expr 'in' body" :=
(opt_bind expr (fun '(v1, v2, v3) => body)) (at level 200).
Definition must {A} (o: option A) : if o then A else unit :=
match o with
| Some a => a
| None => tt
end.
Section Lists.
Fixpoint list_find_opt {A B} (f: A -> option B) (l: list A) : option B :=
match l with
| [] => None
| x :: l =>
let fx := f x in
match fx with
| Some y => Some y
| None => list_find_opt f l
end
end.
Definition list_sum' n l :=
List.fold_right (fun x acc => acc + x) n l.
Definition list_sum l :=
list_sum' 0 l.
Lemma list_sum'_0 :
forall l n, list_sum' n l = list_sum' 0 l + n.
Proof.
induction l; cbn; intros.
- reflexivity.
- rewrite IHl.
rewrite !Plus.plus_assoc_reverse.
rewrite (Plus.plus_comm n a); reflexivity.
Qed.
Lemma list_sum_app :
forall l1 l2, list_sum (l1 ++ l2) = list_sum l1 + list_sum l2.
Proof.
unfold list_sum, list_sum'; intros.
rewrite fold_right_app, list_sum'_0.
reflexivity.
Qed.
Lemma list_sum_firstn_le :
forall n l, list_sum (firstn n l) <= list_sum l.
Proof.
induction n; destruct l; cbn; auto with arith.
Qed.
Lemma list_sum_skipn_le :
forall n l, list_sum (skipn n l) <= list_sum l.
Proof.
induction n; destruct l; cbn; auto with arith.
Qed.
Fixpoint skipn_firstn {A} n n' (l: list A):
List.skipn n (List.firstn n' l) =
List.firstn (n' - n) (List.skipn n l).
Proof.
destruct n, n', l; cbn; try reflexivity.
- destruct (n' - n); reflexivity.
- rewrite skipn_firstn; reflexivity.
Qed.
Fixpoint firstn_skipn {A} n n' (l: list A):
List.firstn n (List.skipn n' l) =
List.skipn n' (List.firstn (n' + n) l).
Proof.
destruct n, n', l; cbn; try reflexivity;
rewrite <- firstn_skipn; reflexivity.
Qed.
Fixpoint firstn_firstn {A} n n' (l: list A):
List.firstn n (List.firstn n' l) =
List.firstn (Nat.min n n') l.
Proof.
destruct n, n', l; cbn; auto using f_equal.
Qed.
Lemma firstn_map {A B} (f : A -> B) :
forall n (l: list A),
List.firstn n (List.map f l) =
List.map f (List.firstn n l).
Proof.
induction n; destruct l; subst; cbn; auto using f_equal.
Qed.
Lemma skipn_map {A B} (f : A -> B) :
forall n (l: list A),
List.skipn n (List.map f l) =
List.map f (List.skipn n l).
Proof.
induction n; destruct l; subst; cbn; auto using f_equal.
Qed.
Lemma skipn_app {A}:
forall (l1 l2: list A) n,
n <= List.length l1 ->
skipn n (List.app l1 l2) = List.app (skipn n l1) l2.
Proof.
induction l1; destruct n; cbn; try (inversion 1; reflexivity).
- intros; apply IHl1; lia.
Qed.
Lemma forallb_pointwise {A} :
forall f1 f2 (ls: list A),
(forall x, List.In x ls -> f1 x = f2 x) ->
forallb f1 ls = forallb f2 ls.
Proof.
induction ls; cbn.
- reflexivity.
- intros; f_equal; eauto.
Qed.
Fixpoint dedup {A} {EQ: EqDec A} (acc: list A) (l: list A) :=
match l with
| [] => acc
| a :: l =>
let already_seen := List.in_dec eq_dec a acc in
let acc := if already_seen then acc else a :: acc in
dedup acc l
end.
Fixpoint iterate_tr (n: nat) {A} (f: A -> A) (init: A) :=
match n with
| 0 => init
| S n => iterate_tr n f (f init)
end.
Fixpoint iterate (n: nat) {A} (f: A -> A) (init: A) :=
match n with
| 0 => init
| S n => f (iterate n f init)
end.
Lemma iterate_assoc:
forall (n: nat) {A} (f: A -> A) (init: A),
iterate n f (f init) = f (iterate n f init).
Proof.
induction n; simpl; intros; try rewrite IHn; reflexivity.
Qed.
Lemma iterate_S_acc :
forall (n: nat) {A} (f: A -> A) (init: A),
iterate (S n) f init = iterate n f (f init).
Proof. intros; symmetry; apply iterate_assoc. Qed.
Lemma iterate_tr_correct :
forall (n: nat) {A} (f: A -> A) (init: A),
iterate_tr n f init = iterate n f init.
Proof.
induction n; simpl; intros.
- reflexivity.
- rewrite IHn, iterate_assoc; reflexivity.
Qed.
Lemma iterate_pointwise_inv {A} (f g: A -> A) (inv: A -> Prop):
(* Use g because that's usually the simpler one *)
(forall x, inv x -> inv (g x)) ->
(forall x, inv x -> f x = g x) ->
forall n,
forall init: A,
inv (init) ->
iterate n f init = iterate n g init.
Proof.
intros Hinv Heq; induction n; intros init Hinvi.
- reflexivity.
- simpl; rewrite <- !iterate_assoc, Heq; auto.
Qed.
End Lists.
Require Lists.Streams.
Declare Scope stream_scope.
Open Scope stream_scope.
Module StreamNotations.
Infix ":::" := Streams.Cons (at level 60, right associativity) : stream_scope.
End StreamNotations.
Module Streams.
Include Coq.Lists.Streams.
Import StreamNotations.
CoFixpoint coiterate {A} (f: A -> A) (init: A) :=
init ::: coiterate f (f init).
Lemma coiterate_eqn {A} (f: A -> A) (init: A) :
coiterate f init =
init ::: coiterate f (f init).
Proof.
rewrite (Streams.unfold_Stream (coiterate f init)) at 1; reflexivity.
Qed.
Lemma map_eqn {A B} (f: A -> B) (s: Streams.Stream A) :
Streams.map f s =
f (Streams.hd s) ::: Streams.map f (Streams.tl s).
Proof.
rewrite (Streams.unfold_Stream (Streams.map f s)) at 1; reflexivity.
Qed.
Lemma Str_nth_0 {A} (hd: A) tl:
Streams.Str_nth 0 (hd ::: tl) = hd.
Proof. reflexivity. Qed.
Lemma Str_nth_S {A} (hd: A) tl n:
Streams.Str_nth (S n) (hd ::: tl) = Streams.Str_nth n tl.
Proof. reflexivity. Qed.
Lemma Str_nth_coiterate {A} (f: A -> A) :
forall n (init: A),
Streams.Str_nth n (coiterate f init) =
iterate n f init.
Proof.
setoid_rewrite <- iterate_tr_correct.
induction n; cbn; intros.
- reflexivity.
- rewrite coiterate_eqn.
apply IHn.
Qed.
Lemma coiterate_pointwise {A} (f g: A -> A):
(forall x, f x = g x) ->
forall init: A,
Streams.EqSt (coiterate f init) (coiterate g init).
Proof.
intros Heq; cofix IH; intros init.
constructor; simpl.
- reflexivity.
- rewrite Heq; apply IH.
Qed.
Lemma coiterate_pointwise_inv {A} (f g: A -> A) (inv: A -> Prop):
(forall x, inv x -> inv (g x)) -> (* Use g because that's usually the simpler one *)
(forall x, inv x -> f x = g x) ->
forall init: A,
inv (init) ->
Streams.EqSt (coiterate f init) (coiterate g init).
Proof.
intros Hinv Heq; cofix IH; intros init Hinvi.
constructor; simpl.
- reflexivity.
- rewrite Heq; auto.
Qed.
Fixpoint firstn {A} (n: nat) (s: Stream A) : list A :=
match n with
| 0 => []
| S n => match s with
| Cons hd tl => hd :: firstn n tl
end
end.
End Streams.
Inductive result {S F} :=
| Success (s: S)
| Failure (f: F).
Arguments result : clear implicits.
Definition result_map_failure {S F1 F2} (fn: F1 -> F2) (r: result S F1) :=
match r with
| Success s => Success s
| Failure f => Failure (fn f)
end.
Definition opt_result {S F} (o: option S) (f: F): result S F :=
match o with
| Some x => Success x
| None => Failure f
end.
Notation "'let/res' var ':=' expr 'in' body" :=
(match expr with
| Success var => body
| Failure f => Failure f
end)
(at level 200).
Section result_list_map.
Context {A B F: Type}.
Context (f: A -> result B F).
(* Written this way to allow use in fixpoints *)
Fixpoint result_list_map (la: list A): result (list B) F :=
match la with
| [] => Success []
| a :: la => let/res b := f a in
let/res la := result_list_map la in
Success (b :: la)
end.
End result_list_map.
Definition is_success {S F} (r: result S F) :=
match r with
| Success s => true
| Failure f => false
end.
Definition extract_success {S F} (r: result S F) (pr: is_success r = true) :=
match r return is_success r = true -> S with
| Success s => fun _ => s
| Failure f => fun pr => match Bool.diff_false_true pr with end
end pr.
Global Set Nested Proofs Allowed.