-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathTypedSyntax.v
61 lines (56 loc) · 2.17 KB
/
TypedSyntax.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(*! Language | Typed ASTs !*)
Require Export Koika.Common Koika.Environments Koika.Types Koika.Primitives.
Import PrimTyped PrimSignatures.
Section Syntax.
Context {pos_t var_t rule_name_t fn_name_t reg_t ext_fn_t: Type}.
Context {R: reg_t -> type}.
Context {Sigma: ext_fn_t -> ExternalSignature}.
Inductive action : tsig var_t -> type -> Type :=
| Fail {sig} tau : action sig tau
| Var {sig} {k: var_t} {tau: type}
(m: member (k, tau) sig) : action sig tau
| Const {sig} {tau: type}
(cst: type_denote tau) : action sig tau
| Assign {sig} {k: var_t} {tau: type}
(m: member (k, tau) sig) (ex: action sig tau) : action sig unit_t
| Seq {sig tau}
(r1: action sig unit_t)
(r2: action sig tau) : action sig tau
| Bind {sig} {tau tau'}
(var: var_t)
(ex: action sig tau)
(body: action (List.cons (var, tau) sig) tau') : action sig tau'
| If {sig tau}
(cond: action sig (bits_t 1))
(tbranch fbranch: action sig tau) : action sig tau
| Read {sig}
(port: Port)
(idx: reg_t): action sig (R idx)
| Write {sig}
(port: Port) (idx: reg_t)
(value: action sig (R idx)) : action sig unit_t
| Unop {sig}
(fn: fn1)
(arg1: action sig (Sigma1 fn).(arg1Sig))
: action sig (Sigma1 fn).(retSig)
| Binop {sig}
(fn: fn2)
(arg1: action sig (Sigma2 fn).(arg1Sig))
(arg2: action sig (Sigma2 fn).(arg2Sig))
: action sig (Sigma2 fn).(retSig)
| ExternalCall {sig}
(fn: ext_fn_t)
(arg: action sig (Sigma fn).(arg1Sig))
: action sig (Sigma fn).(retSig)
| InternalCall {sig tau}
(fn : fn_name_t)
{argspec : tsig var_t}
(args: context (fun k_tau => action sig (snd k_tau)) (List.rev argspec))
(body : action (List.rev argspec) tau)
: action sig tau
| APos {sig tau} (pos: pos_t) (a: action sig tau)
: action sig tau.
Definition rule := action nil unit_t.
End Syntax.
Arguments action pos_t var_t fn_name_t {reg_t ext_fn_t} R Sigma sig tau : assert.
Arguments rule pos_t var_t fn_name_t {reg_t ext_fn_t} R Sigma : assert.