forked from jamesrobertlloyd/automl-phase-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibscores.py
759 lines (663 loc) · 29.6 KB
/
libscores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# Score library for NUMPY arrays
# ChaLearn AutoML challenge
# For regression:
# solution and prediction are vectors of numerical values of the same dimension
# For classification:
# solution = array(p,n) of 0,1 truth values, samples in lines, classes in columns
# prediction = array(p,n) of numerical scores between 0 and 1 (analogous to probabilities)
# Isabelle Guyon and Arthur Pesah, ChaLearn, August-November 2014
# ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS".
# ISABELLE GUYON, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM
# ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AND THE
# WARRANTY OF NON-INFRINGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS.
# IN NO EVENT SHALL ISABELLE GUYON AND/OR OTHER ORGANIZERS BE LIABLE FOR ANY SPECIAL,
# INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN
# CONNECTION WITH THE USE OR PERFORMANCE OF SOFTWARE, DOCUMENTS, MATERIALS,
# PUBLICATIONS, OR INFORMATION MADE AVAILABLE FOR THE CHALLENGE.
from sklearn import metrics
import numpy as np
import scipy as sp
import os
from sklearn.preprocessing import *
from sys import stderr
from sys import version
swrite = stderr.write
from os import getcwd as pwd
from pip import get_installed_distributions as lib
from glob import glob
import platform
import psutil
if (os.name == "nt"):
filesep = '\\'
else:
filesep = '/'
# ========= Useful functions ==============
def read_array(filename):
''' Read array and convert to 2d np arrays '''
array = np.genfromtxt(filename, dtype=float)
if len(array.shape)==1:
array = array.reshape( -1, 1 )
return array
def sanitize_array(array):
''' Replace NaN and Inf (there should not be any!)'''
a=np.ravel(array)
maxi = np.nanmax((filter(lambda x: x != float('inf'), a))) # Max except NaN and Inf
mini = np.nanmin((filter(lambda x: x != float('-inf'), a))) # Mini except NaN and Inf
array[array==float('inf')]=maxi
array[array==float('-inf')]=mini
mid = (maxi + mini)/2
array[np.isnan(array)]=mid
return array
def normalize_array (solution, prediction):
''' Use min and max of solution as scaling factors to normalize prediction,
then threshold it to [0, 1]. Binarize solution to {0, 1}.
This allows applying classification scores to all cases.
In principle, this should not do anything to properly formatted
classification inputs and outputs.'''
# Binarize solution
sol=np.ravel(solution) # convert to 1-d array
maxi = np.nanmax((filter(lambda x: x != float('inf'), sol))) # Max except NaN and Inf
mini = np.nanmin((filter(lambda x: x != float('-inf'), sol))) # Mini except NaN and Inf
if maxi == mini:
print('Warning, cannot normalize')
return [solution, prediction]
diff = maxi - mini
mid = (maxi + mini)/2.
new_solution = np.copy(solution)
new_solution[solution>=mid] = 1
new_solution[solution<mid] = 0
# Normalize and threshold predictions (takes effect only if solution not in {0, 1})
new_prediction = (np.copy(prediction) - float(mini))/float(diff)
new_prediction[new_prediction>1] = 1 # and if predictions exceed the bounds [0, 1]
new_prediction[new_prediction<0] = 0
# Make probabilities smoother
#new_prediction = np.power(new_prediction, (1./10))
return [new_solution, new_prediction]
def binarize_predictions(array, task='binary.classification'):
''' Turn predictions into decisions {0,1} by selecting the class with largest
score for multiclass problems and thresholding at 0.5 for other cases.'''
# add a very small random value as tie breaker (a bit bad because this changes the score every time)
# so to make sure we get the same result every time, we seed it
#eps = 1e-15
#np.random.seed(sum(array.shape))
#array = array + eps*np.random.rand(array.shape[0],array.shape[1])
bin_array = np.zeros(array.shape)
if (task != 'multiclass.classification') or (array.shape[1]==1):
bin_array[array>=0.5] = 1
else:
sample_num=array.shape[0]
for i in range(sample_num):
j = np.argmax(array[i,:])
bin_array[i,j] = 1
return bin_array
def acc_stat (solution, prediction):
''' Return accuracy statistics TN, FP, TP, FN
Assumes that solution and prediction are binary 0/1 vectors.'''
# This uses floats so the results are floats
TN = sum(np.multiply((1-solution), (1-prediction)))
FN = sum(np.multiply(solution, (1-prediction)))
TP = sum(np.multiply(solution, prediction))
FP = sum(np.multiply((1-solution), prediction))
#print "TN =",TN
#print "FP =",FP
#print "TP =",TP
#print "FN =",FN
return (TN, FP, TP, FN)
def tiedrank(a):
''' Return the ranks (with base 1) of a list resolving ties by averaging.
This works for numpy arrays.'''
m=len(a)
# Sort a in ascending order (sa=sorted vals, i=indices)
i=a.argsort()
sa=a[i]
# Find unique values
uval=np.unique(a)
# Test whether there are ties
R=np.arange(m, dtype=float)+1 # Ranks with base 1
if len(uval)!=m:
# Average the ranks for the ties
oldval=sa[0]
newval=sa[0]
k0=0
for k in range(1,m):
newval=sa[k]
if newval==oldval:
# moving average
R[k0:k+1]=R[k-1]*(k-k0)/(k-k0+1)+R[k]/(k-k0+1)
else:
k0=k;
oldval=newval
# Invert the index
S=np.empty(m)
S[i]=R
return S
def mvmean(R, axis=0):
''' Moving average to avoid rounding errors. A bit slow, but...
Computes the mean along the given axis, except if this is a vector, in which case the mean is returned.
Does NOT flatten.'''
if len(R.shape)==0: return R
average = lambda x: reduce(lambda i, j: (0, (j[0]/(j[0]+1.))*i[1]+(1./(j[0]+1))*j[1]), enumerate(x))[1]
R=np.array(R)
if len(R.shape)==1: return average(R)
if axis==1:
return np.array(map(average, R))
else:
return np.array(map(average, R.transpose()))
# ======= All metrics used for scoring in the challenge ========
### REGRESSION METRICS (work on raw solution and prediction)
# These can be computed on all solutions and predictions (classification included)
def r2_metric(solution, prediction, task='regression'):
''' 1 - Mean squared error divided by variance '''
mse = mvmean((solution-prediction)**2)
var = mvmean((solution-mvmean(solution))**2)
score = 1 - mse / var
return mvmean(score)
def a_metric (solution, prediction, task='regression'):
''' 1 - Mean absolute error divided by mean absolute deviation '''
mae = mvmean(np.abs(solution-prediction)) # mean absolute error
mad = mvmean(np.abs(solution-mvmean(solution))) # mean absolute deviation
score = 1 - mae / mad
return mvmean(score)
### END REGRESSION METRICS
### CLASSIFICATION METRICS (work on solutions in {0, 1} and predictions in [0, 1])
# These can be computed for regression scores only after running normalize_array
def bac_metric (solution, prediction, task='binary.classification'):
''' Compute the normalized balanced accuracy. The binarization and
the normalization differ for the multi-label and multi-class case. '''
# Convert to 2d if necessary
solution = np.array(solution, ndmin=2)
if solution.shape[1] == 1:
solution = solution.T
prediction = np.array(prediction, ndmin=2)
if prediction.shape[1] == 1:
prediction = prediction.T
# Carry on
label_num = solution.shape[1]
score = np.zeros(label_num)
bin_prediction = binarize_predictions(prediction, task)
[tn,fp,tp,fn] = acc_stat(solution, bin_prediction)
# Bounding to avoid division by 0
eps = 1e-15
tp = sp.maximum (eps, tp)
pos_num = sp.maximum (eps, tp+fn)
tpr = tp / pos_num # true positive rate (sensitivity)
if (task != 'multiclass.classification') or (label_num==1):
tn = sp.maximum (eps, tn)
neg_num = sp.maximum (eps, tn+fp)
tnr = tn / neg_num # true negative rate (specificity)
bac = 0.5*(tpr + tnr)
base_bac = 0.5 # random predictions for binary case
else:
bac = tpr
base_bac = 1./label_num # random predictions for multiclass case
bac = mvmean(bac) # average over all classes
# Normalize: 0 for random, 1 for perfect
score = (bac - base_bac) / sp.maximum(eps, (1 - base_bac))
return score
def pac_metric (solution, prediction, task='binary.classification'):
''' Probabilistic Accuracy based on log_loss metric.
We assume the solution is in {0, 1} and prediction in [0, 1].
Otherwise, run normalize_array.'''
debug_flag=False
[sample_num, label_num] = solution.shape
if label_num==1: task='binary.classification'
eps = 1e-15
the_log_loss = log_loss(solution, prediction, task)
# Compute the base log loss (using the prior probabilities)
pos_num = 1.* sum(solution) # float conversion!
frac_pos = pos_num / sample_num # prior proba of positive class
the_base_log_loss = prior_log_loss(frac_pos, task)
# Alternative computation of the same thing (slower)
# Should always return the same thing except in the multi-label case
# For which the analytic solution makes more sense
if debug_flag:
base_prediction = np.empty(prediction.shape)
for k in range(sample_num): base_prediction[k,:] = frac_pos
base_log_loss = log_loss(solution, base_prediction, task)
diff = np.array(abs(the_base_log_loss-base_log_loss))
if len(diff.shape)>0: diff=max(diff)
if(diff)>1e-10:
print('Arrggh {} != {}'.format(the_base_log_loss,base_log_loss))
# Exponentiate to turn into an accuracy-like score.
# In the multi-label case, we need to average AFTER taking the exp
# because it is an NL operation
pac = mvmean(np.exp(-the_log_loss))
base_pac = mvmean(np.exp(-the_base_log_loss))
# Normalize: 0 for random, 1 for perfect
score = (pac - base_pac) / sp.maximum(eps, (1 - base_pac))
return score
def f1_metric (solution, prediction, task='binary.classification'):
''' Compute the normalized f1 measure. The binarization differs
for the multi-label and multi-class case.
A non-weighted average over classes is taken.
The score is normalized.'''
label_num = solution.shape[1]
score = np.zeros(label_num)
bin_prediction = binarize_predictions(prediction, task)
[tn,fp,tp,fn] = acc_stat(solution, bin_prediction)
# Bounding to avoid division by 0
eps = 1e-15
true_pos_num = sp.maximum (eps, tp+fn)
found_pos_num = sp.maximum (eps, tp+fp)
tp = sp.maximum (eps, tp)
tpr = tp / true_pos_num # true positive rate (recall)
ppv = tp / found_pos_num # positive predictive value (precision)
arithmetic_mean = 0.5 * sp.maximum (eps, tpr+ppv)
# Harmonic mean:
f1 = tpr*ppv/arithmetic_mean
# Average over all classes
f1 = mvmean(f1)
# Normalize: 0 for random, 1 for perfect
if (task != 'multiclass.classification') or (label_num==1):
# How to choose the "base_f1"?
# For the binary/multilabel classification case, one may want to predict all 1.
# In that case tpr = 1 and ppv = frac_pos. f1 = 2 * frac_pos / (1+frac_pos)
# frac_pos = mvmean(solution.ravel())
# base_f1 = 2 * frac_pos / (1+frac_pos)
# or predict random values with probability 0.5, in which case
# base_f1 = 0.5
# the first solution is better only if frac_pos > 1/3.
# The solution in which we predict according to the class prior frac_pos gives
# f1 = tpr = ppv = frac_pos, which is worse than 0.5 if frac_pos<0.5
# So, because the f1 score is used if frac_pos is small (typically <0.1)
# the best is to assume that base_f1=0.5
base_f1 = 0.5
# For the multiclass case, this is not possible (though it does not make much sense to
# use f1 for multiclass problems), so the best would be to assign values at random to get
# tpr=ppv=frac_pos, where frac_pos=1/label_num
else:
base_f1=1./label_num
score = (f1 - base_f1) / sp.maximum(eps, (1 - base_f1))
return score
def auc_metric(solution, prediction, task='binary.classification'):
''' Normarlized Area under ROC curve (AUC).
Return Gini index = 2*AUC-1 for binary classification problems.
Should work for a vector of binary 0/1 (or -1/1)"solution" and any discriminant values
for the predictions. If solution and prediction are not vectors, the AUC
of the columns of the matrices are computed and averaged (with no weight).
The same for all classification problems (in fact it treats well only the
binary and multilabel classification problems).'''
#auc = metrics.roc_auc_score(solution, prediction, average=None)
# There is a bug in metrics.roc_auc_score: auc([1,0,0],[1e-10,0,0]) incorrect
label_num=solution.shape[1]
auc=np.empty(label_num)
for k in range(label_num):
r_ = tiedrank(prediction[:,k])
s_ = solution[:,k]
if sum(s_)==0: print('WARNING: no positive class example in class {}'.format(k+1))
npos = sum(s_==1)
nneg = sum(s_<1)
auc[k] = (sum(r_[s_==1]) - npos*(npos+1)/2) / (nneg*npos)
return 2*mvmean(auc)-1
### END CLASSIFICATION METRICS
# ======= Specialized scores ========
# We run all of them for all tasks even though they don't make sense for some tasks
def nbac_binary_score(solution, prediction):
''' Normalized balanced accuracy for binary and multilabel classification '''
return bac_metric (solution, prediction, task='binary.classification')
def nbac_multiclass_score(solution, prediction):
''' Multiclass accuracy for binary and multilabel classification '''
return bac_metric (solution, prediction, task='multiclass.classification')
def npac_binary_score(solution, prediction):
''' Normalized balanced accuracy for binary and multilabel classification '''
return pac_metric (solution, prediction, task='binary.classification')
def npac_multiclass_score(solution, prediction):
''' Multiclass accuracy for binary and multilabel classification '''
return pac_metric (solution, prediction, task='multiclass.classification')
def f1_binary_score(solution, prediction):
''' Normalized balanced accuracy for binary and multilabel classification '''
return f1_metric (solution, prediction, task='binary.classification')
def f1_multiclass_score(solution, prediction):
''' Multiclass accuracy for binary and multilabel classification '''
return f1_metric (solution, prediction, task='multiclass.classification')
def log_loss(solution, prediction, task = 'binary.classification'):
''' Log loss for binary and multiclass. '''
[sample_num, label_num] = solution.shape
eps = 1e-15
pred = np.copy(prediction) # beware: changes in prediction occur through this
sol = np.copy(solution)
if (task == 'multiclass.classification') and (label_num>1):
# Make sure the lines add up to one for multi-class classification
norma = np.sum(prediction, axis=1)
for k in range(sample_num):
pred[k,:] /= sp.maximum (norma[k], eps)
# Make sure there is a single label active per line for multi-class classification
sol = binarize_predictions(solution, task='multiclass.classification')
# For the base prediction, this solution is ridiculous in the multi-label case
# Bounding of predictions to avoid log(0),1/0,...
pred = sp.minimum (1-eps, sp.maximum (eps, pred))
# Compute the log loss
pos_class_log_loss = - mvmean(sol*np.log(pred), axis=0)
if (task != 'multiclass.classification') or (label_num==1):
# The multi-label case is a bunch of binary problems.
# The second class is the negative class for each column.
neg_class_log_loss = - mvmean((1-sol)*np.log(1-pred), axis=0)
log_loss = pos_class_log_loss + neg_class_log_loss
# Each column is an independent problem, so we average.
# The probabilities in one line do not add up to one.
# log_loss = mvmean(log_loss)
# print('binary {}'.format(log_loss))
# In the multilabel case, the right thing i to AVERAGE not sum
# We return all the scores so we can normalize correctly later on
else:
# For the multiclass case the probabilities in one line add up one.
log_loss = pos_class_log_loss
# We sum the contributions of the columns.
log_loss = np.sum(log_loss)
#print('multiclass {}'.format(log_loss))
return log_loss
def prior_log_loss(frac_pos, task = 'binary.classification'):
''' Baseline log loss. For multiplr classes ot labels return the volues for each column'''
eps = 1e-15
frac_pos_ = sp.maximum (eps, frac_pos)
if (task != 'multiclass.classification'): # binary case
frac_neg = 1-frac_pos
frac_neg_ = sp.maximum (eps, frac_neg)
pos_class_log_loss_ = - frac_pos * np.log(frac_pos_)
neg_class_log_loss_ = - frac_neg * np.log(frac_neg_)
base_log_loss = pos_class_log_loss_ + neg_class_log_loss_
# base_log_loss = mvmean(base_log_loss)
# print('binary {}'.format(base_log_loss))
# In the multilabel case, the right thing i to AVERAGE not sum
# We return all the scores so we can normalize correctly later on
else: # multiclass case
fp = frac_pos_ / sum(frac_pos_) # Need to renormalize the lines in multiclass case
# Only ONE label is 1 in the multiclass case active for each line
pos_class_log_loss_ = - frac_pos * np.log(fp)
base_log_loss = np.sum(pos_class_log_loss_)
return base_log_loss
# sklearn implementations for comparison
def log_loss_(solution, prediction):
return metrics.log_loss(solution, prediction)
def r2_score_(solution, prediction):
return metrics.r2_score(solution, prediction)
def a_score_(solution, prediction):
mad = float(mvmean(abs(solution-mvmean(solution))))
return 1 - metrics.mean_absolute_error(solution, prediction)/mad
def auc_score_(solution, prediction):
auc = metrics.roc_auc_score(solution, prediction, average=None)
return mvmean(auc)
### SOME I/O functions
def ls(filename):
return sorted(glob(filename))
def write_list(lst):
for item in lst:
swrite(item + "\n")
def mkdir(d):
if not os.path.exists(d):
os.makedirs(d)
def get_info (filename):
''' Get all information {attribute = value} pairs from the public.info file'''
info={}
with open (filename, "r") as info_file:
lines = info_file.readlines()
features_list = list(map(lambda x: tuple(x.strip("\'").split(" = ")), lines))
for (key, value) in features_list:
info[key] = value.rstrip().strip("'").strip(' ')
if info[key].isdigit(): # if we have a number, we want it to be an integer
info[key] = int(info[key])
return info
def show_io(input_dir, output_dir):
''' show directory structure and inputs and autputs to scoring program'''
swrite('\n=== DIRECTORIES ===\n\n')
# Show this directory
swrite("-- Current directory " + pwd() + ":\n")
write_list(ls('.'))
write_list(ls('./*'))
write_list(ls('./*/*'))
swrite("\n")
# List input and predictions directories
swrite("-- Input directory " + input_dir + ":\n")
write_list(ls(input_dir))
write_list(ls(input_dir + '/*'))
write_list(ls(input_dir + '/*/*'))
write_list(ls(input_dir + '/*/*/*'))
swrite("\n")
swrite("-- Output directory " + output_dir + ":\n")
write_list(ls(output_dir))
write_list(ls(output_dir + '/*'))
swrite("\n")
# write meta data to sdterr
swrite('\n=== METADATA ===\n\n')
swrite("-- Current directory " + pwd() + ":\n")
try:
metadata = yaml.load(open('metadata', 'r'))
for key,value in metadata.items():
swrite(key + ': ')
swrite(str(value) + '\n')
except:
swrite("none\n");
swrite("-- Input directory " + input_dir + ":\n")
try:
metadata = yaml.load(open(os.path.join(input_dir, 'metadata'), 'r'))
for key,value in metadata.items():
swrite(key + ': ')
swrite(str(value) + '\n')
swrite("\n")
except:
swrite("none\n");
def show_version(scoring_version):
''' Python version and library versions '''
swrite('\n=== VERSIONS ===\n\n')
# Scoring program version
swrite("Scoring program version: " + str(scoring_version) + "\n\n")
# Python version
swrite("Python version: " + version + "\n\n")
# Give information on the version installed
swrite("Versions of libraries installed:\n")
map(swrite, sorted(["%s==%s\n" % (i.key, i.version) for i in lib()]))
def show_platform():
''' Show information on platform'''
swrite('\n=== SYSTEM ===\n\n')
try:
linux_distribution = platform.linux_distribution()
except:
linux_distribution = "N/A"
swrite("""
dist: %s
linux_distribution: %s
system: %s
machine: %s
platform: %s
uname: %s
version: %s
mac_ver: %s
memory: %s
number of CPU: %s
""" % (
str(platform.dist()),
linux_distribution,
platform.system(),
platform.machine(),
platform.platform(),
platform.uname(),
platform.version(),
platform.mac_ver(),
psutil.virtual_memory(),
str(psutil.cpu_count())
))
def compute_all_scores(solution, prediction):
''' Compute all the scores and return them as a dist'''
missing_score = -0.999999
scoring = {'BAC (multilabel)':nbac_binary_score,
'BAC (multiclass)':nbac_multiclass_score,
'F1 (multilabel)':f1_binary_score,
'F1 (multiclass)':f1_multiclass_score,
'Regression ABS ':a_metric,
'Regression R2 ':r2_metric,
'AUC (multilabel)':auc_metric,
'PAC (multilabel)':npac_binary_score,
'PAC (multiclass)':npac_multiclass_score}
# Normalize/sanitize inputs
[csolution, cprediction] = normalize_array (solution, prediction)
solution = sanitize_array (solution); prediction = sanitize_array (prediction)
# Compute all scores
score_names = sorted(scoring.keys())
scores = {}
for key in score_names:
scoring_func = scoring[key]
try:
if key=='Regression R2 ' or key=='Regression ABS ':
scores[key] = scoring_func(solution, prediction)
else:
scores[key] = scoring_func(csolution, cprediction)
except:
scores[key] = missing_score
return scores
def write_scores(fp, scores):
''' Write scores to file opened under file pointer fp'''
for key in scores.keys():
fp.write("%s --> %s\n" % (key, scores[key]))
print(key + " --> " + str(scores[key]))
def show_all_scores(solution, prediction):
''' Compute and display all the scores for debug purposes'''
scores = compute_all_scores(solution, prediction)
for key in scores.keys():
print(key + " --> " + str(scores[key]))
############################### TEST PROGRAM ##########################################
if __name__=="__main__":
# This shows a bug in metrics.roc_auc_score
# print('\n\nBug in sklearn.metrics.roc_auc_score:')
# print('auc([1,0,0],[1e-10,0,0])=1')
# print('Correct (ours): ' +str(auc_metric(np.array([[1,0,0]]).transpose(),np.array([[1e-10,0,0]]).transpose())))
# print('Incorrect (sklearn): ' +str(metrics.roc_auc_score(np.array([1,0,0]),np.array([1e-10,0,0]))))
# This checks the binary and multi-class cases are well implemented
# In the 2-class case, all results should be identical, except for f1 because
# this is a score that is not symmetric in the 2 classes.
eps = 1e-15
print('\n\nBinary score verification:')
print('\n\n==========================')
sol0 = np.array([[1, 0],[1, 0],[0, 1],[0, 1]])
comment = ['PERFECT']
Pred = [sol0]
Sol = [sol0]
comment.append('ANTI-PERFECT, very bad for r2_score')
Pred.append(1-sol0)
Sol.append(sol0)
comment.append('UNEVEN PROBA, BUT BINARIZED VERSION BALANCED (bac and auc=0.5)')
Pred.append(np.array([[0.7, 0.3],[0.4, 0.6],[0.49, 0.51],[0.2, 0.8]])) # here is we have only 2, pac not 0 in uni-col
Sol.append(sol0)
comment.append('PROBA=0.5, TIES BROKEN WITH SMALL VALUE TO EVEN THE BINARIZED VERSION')
Pred.append(np.array([[0.5+eps, 0.5-eps],[0.5-eps, 0.5+eps],[0.5+eps, 0.5-eps],[0.5-eps, 0.5+eps]]))
Sol.append(sol0)
comment.append('PROBA=0.5, TIES NOT BROKEN (bad for f1 score)')
Pred.append(np.array([[0.5, 0.5],[0.5, 0.5],[0.5, 0.5],[0.5, 0.5]]))
Sol.append(sol0)
sol1 = np.array([[1, 0],[0, 1],[0, 1]])
comment.append('EVEN PROBA, but wrong PAC prior because uneven number of samples')
Pred.append(np.array([[0.5, 0.5],[0.5, 0.5],[0.5, 0.5]]))
Sol.append(sol1)
comment.append('Correct PAC prior; score generally 0. But 100% error on positive class because of binarization so f1 (1 col) is at its worst.')
p=len(sol1)
Pred.append(np.array([sum(sol1)*1./p]*p))
Sol.append(sol1)
comment.append('All positive')
Pred.append(np.array([[1, 1],[1, 1],[1, 1]]))
Sol.append(sol1)
comment.append('All negative')
Pred.append(np.array([[0, 0],[0, 0],[0, 0]]))
Sol.append(sol1)
for k in range(len(Sol)):
sol = Sol[k]
pred= Pred[k]
print('****** ({}) {} ******'.format(k, comment[k]))
print('------ 2 columns ------')
show_all_scores(sol, pred)
print('------ 1 column ------')
sol=np.array([sol[:,0]]).transpose()
pred=np.array([pred[:,0]]).transpose()
show_all_scores(sol, pred)
print('\n\nMulticlass score verification:')
print('\n\n==========================')
sol2 = np.array([[1, 0, 0],[0, 1, 0],[1, 0, 0], [1, 0, 0]])
comment = ['Three classes perfect']
Pred = [sol2]
Sol = [sol2]
comment.append('Three classes all wrong')
Pred.append(np.array([[0, 1, 0],[0, 0, 1],[0, 1, 0], [0, 0, 1]]))
Sol.append(sol2)
comment.append('Three classes equi proba')
Pred.append(np.array([[1/3, 1/3, 1/3],[1/3, 1/3, 1/3],[1/3, 1/3, 1/3], [1/3, 1/3, 1/3]]))
Sol.append(sol2)
comment.append('Three classes some proba that do not add up')
Pred.append(np.array([[0.2, 0, 0.5],[0.8, 0.4, 0.1],[0.9, 0.1, 0.2], [0.7, 0.3, 0.3]]))
Sol.append(sol2)
comment.append('Three classes predict prior')
Pred.append(np.array([[ 0.75, 0.25, 0. ],[ 0.75, 0.25, 0. ],[ 0.75, 0.25, 0. ], [ 0.75, 0.25, 0. ]]))
Sol.append(sol2)
for k in range(len(Sol)):
sol = Sol[k]
pred= Pred[k]
print('****** ({}) {} ******'.format(k, comment[k]))
show_all_scores(sol, pred)
print('\n\nMulti-label score verification: 1) all identical labels')
print('\n\n=======================================================')
print('\nIt is normal that for more then 2 labels the results are different for the multiclass scores.')
print('\nBut they should be indetical for the multilabel scores.')
num=2
sol=np.array([[1, 1, 1],[0, 0, 0],[0, 0, 0], [0, 0, 0]])
sol3 = sol[:,0:num]
if num==1:
sol3=np.array([sol3[:,0]]).transpose()
comment = ['{} labels perfect'.format(num)]
Pred = [sol3]
Sol = [sol3]
comment.append('All wrong, in the multi-label sense')
Pred.append(1-sol3)
Sol.append(sol3)
comment.append('All equi proba: 0.5')
sol=np.array([[0.5, 0.5, 0.5],[0.5, 0.5, 0.5],[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]])
if num==1:
Pred.append(np.array([sol[:,0]]).transpose())
else:
Pred.append(sol[:,0:num])
Sol.append(sol3)
comment.append('All equi proba, prior: 0.25')
sol=np.array([[ 0.25, 0.25, 0.25 ],[ 0.25, 0.25, 0.25 ],[ 0.25, 0.25, 0.25 ], [ 0.25, 0.25, 0.25 ]])
if num==1:
Pred.append(np.array([sol[:,0]]).transpose())
else:
Pred.append(sol[:,0:num])
Sol.append(sol3)
comment.append('Some proba')
sol=np.array([[0.2, 0.2, 0.2],[0.8, 0.8, 0.8],[0.9, 0.9, 0.9], [0.7, 0.7, 0.7]])
if num==1:
Pred.append(np.array([sol[:,0]]).transpose())
else:
Pred.append(sol[:,0:num])
Sol.append(sol3)
comment.append('Invert both solution and prediction')
if num==1:
Pred.append(np.array([sol[:,0]]).transpose())
else:
Pred.append(sol[:,0:num])
Sol.append(1-sol3)
for k in range(len(Sol)):
sol = Sol[k]
pred= Pred[k]
print('****** ({}) {} ******'.format(k, comment[k]))
show_all_scores(sol, pred)
print('\n\nMulti-label score verification:')
print('\n\n==========================')
sol4 = np.array([[1, 0, 0],[0, 1, 0],[0, 0, 1], [0, 0, 1]])
comment = ['Three labels perfect']
Pred = [sol4]
Sol = [sol4]
comment.append('Three classes all wrong, in the multi-label sense')
Pred.append(1-sol4)
Sol.append(sol4)
comment.append('Three classes equi proba')
Pred.append(np.array([[1/3, 1/3, 1/3],[1/3, 1/3, 1/3],[1/3, 1/3, 1/3], [1/3, 1/3, 1/3]]))
Sol.append(sol4)
comment.append('Three classes some proba that do not add up')
Pred.append(np.array([[0.2, 0, 0.5],[0.8, 0.4, 0.1],[0.9, 0.1, 0.2], [0.7, 0.3, 0.3]]))
Sol.append(sol4)
comment.append('Three classes predict prior')
Pred.append(np.array([[ 0.25, 0.25, 0.5 ],[ 0.25, 0.25, 0.5 ],[ 0.25, 0.25, 0.5 ], [ 0.25, 0.25, 0.5 ]]))
Sol.append(sol4)
for k in range(len(Sol)):
sol = Sol[k]
pred= Pred[k]
print('****** ({}) {} ******'.format(k, comment[k]))
show_all_scores(sol, pred)