-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDESCRIPTION
118 lines (118 loc) · 3.91 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Type: Package
Package: mlr3mbo
Title: Flexible Bayesian Optimization
Version: 0.2.8.9000
Authors@R: c(
person("Lennart", "Schneider", , "[email protected]", role = c("cre", "aut"),
comment = c(ORCID = "0000-0003-4152-5308")),
person("Jakob", "Richter", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0003-4481-5554")),
person("Marc", "Becker", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0002-8115-0400")),
person("Michel", "Lang", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0001-9754-0393")),
person("Bernd", "Bischl", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0001-6002-6980")),
person("Florian", "Pfisterer", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0001-8867-762X")),
person("Martin", "Binder", , "[email protected]", role = "aut"),
person("Sebastian", "Fischer", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0002-9609-3197")),
person("Michael H.", "Buselli", role = "cph"),
person("Wessel", "Dankers", role = "cph"),
person("Carlos", "Fonseca", role = "cph"),
person("Manuel", "Lopez-Ibanez", role = "cph"),
person("Luis", "Paquete", role = "cph"))
Description: A modern and flexible approach to Bayesian Optimization / Model
Based Optimization building on the 'bbotk' package. 'mlr3mbo' is a toolbox
providing both ready-to-use optimization algorithms as well as their fundamental
building blocks allowing for straightforward implementation of custom
algorithms. Single- and multi-objective optimization is supported as well as
mixed continuous, categorical and conditional search spaces. Moreover, using
'mlr3mbo' for hyperparameter optimization of machine learning models within the
'mlr3' ecosystem is straightforward via 'mlr3tuning'. Examples of ready-to-use
optimization algorithms include Efficient Global Optimization by Jones et al.
(1998) <doi:10.1023/A:1008306431147>, ParEGO by Knowles (2006)
<doi:10.1109/TEVC.2005.851274> and SMS-EGO by Ponweiser et al. (2008)
<doi:10.1007/978-3-540-87700-4_78>.
License: LGPL-3
URL: https://mlr3mbo.mlr-org.com, https://github.com/mlr-org/mlr3mbo
BugReports: https://github.com/mlr-org/mlr3mbo/issues
Depends:
mlr3tuning (>= 1.1.0),
R (>= 3.1.0)
Imports:
bbotk (>= 1.2.0),
checkmate (>= 2.0.0),
data.table,
lgr (>= 0.3.4),
mlr3 (>= 0.22.1),
mlr3misc (>= 0.11.0),
paradox (>= 1.0.1),
spacefillr,
R6 (>= 2.4.1)
Suggests:
DiceKriging,
emoa,
fastGHQuad,
lhs,
mlr3learners (>= 0.5.4),
mlr3pipelines (>= 0.4.2),
nloptr,
ranger,
rgenoud,
rpart,
redux,
rush,
stringi,
testthat (>= 3.0.0)
ByteCompile: no
Encoding: UTF-8
Config/testthat/edition: 3
Config/testthat/parallel: false
NeedsCompilation: yes
Roxygen: list(markdown = TRUE, r6 = TRUE)
RoxygenNote: 7.3.2
Collate:
'mlr_acqfunctions.R'
'AcqFunction.R'
'AcqFunctionAEI.R'
'AcqFunctionCB.R'
'AcqFunctionEHVI.R'
'AcqFunctionEHVIGH.R'
'AcqFunctionEI.R'
'AcqFunctionEIPS.R'
'AcqFunctionMean.R'
'AcqFunctionMulti.R'
'AcqFunctionPI.R'
'AcqFunctionSD.R'
'AcqFunctionSmsEgo.R'
'AcqFunctionStochasticCB.R'
'AcqFunctionStochasticEI.R'
'AcqOptimizer.R'
'aaa.R'
'OptimizerADBO.R'
'OptimizerAsyncMbo.R'
'OptimizerMbo.R'
'mlr_result_assigners.R'
'ResultAssigner.R'
'ResultAssignerArchive.R'
'ResultAssignerSurrogate.R'
'Surrogate.R'
'SurrogateLearner.R'
'SurrogateLearnerCollection.R'
'TunerADBO.R'
'TunerAsyncMbo.R'
'TunerMbo.R'
'mlr_loop_functions.R'
'bayesopt_ego.R'
'bayesopt_emo.R'
'bayesopt_mpcl.R'
'bayesopt_parego.R'
'bayesopt_smsego.R'
'bibentries.R'
'helper.R'
'loop_function.R'
'mbo_defaults.R'
'sugar.R'
'zzz.R'