-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path05-py-assimilate.py
651 lines (561 loc) · 20.1 KB
/
05-py-assimilate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
from __future__ import division
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This script intended to be the main assimilation script
NEED TO CHECK:
> 1. Division by numbers 4/5 check not to divide
> 2. check cos and sin for degree or radian
> 3.
"""
__author__ = "Saeed Moghimi"
__copyright__ = "Copyright 2015, Oregon State University"
__license__ = "GPL"
__version__ = "0.1"
__email__ = "[email protected]"
#####################################################################
# Saeed Moghimi; [email protected]
# Logs:
# 1.0 03/25/2013 02:14:41 PM
#
#
#
import os,sys
############################################
os.system('rm base_info.pyc' )
if 'base_info' in sys.modules:
del(sys.modules["base_info"])
import base_info
###########################################
import matplotlib
matplotlib.use('Agg')
import glob
import matplotlib.pyplot as plt
import numpy as np
import netCDF4
import netcdftime
from scipy.optimize import fsolve
from datetime import datetime
global g
import pickle
#
args = sys.argv
itr = int(args[1])
sys.path.append("py/")
#control vars
LOCALIZE = True
real_data = base_info.real_data
assim_wav = base_info.asim_wav
assim_cur = base_info.asim_sar
assim_swf = base_info.asim_swf
localize_len = base_info.Localize_len
radar_err_reduce = base_info.radar_err_reduction[itr]
sar_err_reduce = base_info.sar_err_reduction[itr]
swift_err_reduce = base_info.swift_err_reduction[itr]
##
#Set input parameters
#base_dir = '/home/shusin5/users/moghimi/assimilation/assim_local/real_data_10days_v2/01_main_ebb/'
#inp_dir = base_dir + '/inp/'
#scr_dir = '/home/server/pi/homes/moghimi/work/00-projs/01-muri/00-progs/cowast/project2/07-assim/scr_generations/set4_all/pypysim/'
#
base_dir = base_info.base_dir
scr_dir = base_info.scr_dir
prior = base_info.prior
final_grd = base_info.grd
#
######################################################
####################################################
#Set input parameters
#pysim_inp = base_dir + '/pysim_inp.txt'
#fdata1=open(pysim_inp)
#for line in fdata1.readlines():
# if 'itr' in line: itr = int (line.split()[-1])
#fdata1.close()
#
inp_dir = base_dir + '/inp/'
run_id = '/run_'+str(1000+itr)
assimilate_dir = base_dir+run_id+'/05_assimilate/'
#####################################################
#import calc_k
g = 9.8126
#sys.path.append(os.environ["INP_DIR"]+'/scr/py')
class component:
def __init__(self,num):
self.x=np.zeros((num),dtype='float')
self.y=np.zeros((num),dtype='float')
self.data=np.zeros((num),dtype='float')
self.s=np.zeros((num),dtype='float')
#
# lump observations together
class comp_list:
def __init__(self):
self.x= np.zeros((0) ,dtype='float')
self.y= np.zeros((0) ,dtype='float')
self.data= np.zeros((0) ,dtype='float')
self.s= np.zeros((0) ,dtype='float')
self.f= np.zeros((0) ,dtype='float')
#
# compute model covariances
#
def mycov(a,b):
"""
Cab = myCov(a,b)
Computes sample covariance 'a' and 'b'. Inputs should have dimensions
as follows...
size(a) = [ M, N ]
size(b) = [ P, N ]
That is, each matrix consists of N samples of an Mx1 (or Px1) vector.
Note M and P need not be equal (unlike the builtin matlab function cov.m).
Output 'Cab' is the sample covariance, which has dimensions MxP.
a=2 * np.random.rand(3 ,5)
b=2.2* np.random.rand(4 ,5)
"""
if(a.shape[1] != b.shape[1]):
print 'inputs must have same number of samples (2nd dimension)'
[any,anx] = a.shape
[bny,bnx] = b.shape
a_mean = np.tile(a.mean(1),a.shape[1]).reshape (a.shape[1],a.shape[0]).T
b_mean = np.tile(b.mean(1),b.shape[1]).reshape (b.shape[1],b.shape[0]).T
da = a - a_mean
db = b - b_mean
N = anx
cab = (1.0/(N-1.0)) * np.dot(da,db.T)
return cab
#
def omega_vec(Cpp,dist,L):
"""
Cpp = omega_vec(Cpp,dist,L)
helper function: decorrelation for long length scales (matrix to be
multiplied onto prior covariance, element by element
"""
if(L==0): return
a = np.sqrt(10.0/3.0)*L
b = dist
boa = b/a
c = 0*Cpp
ind = np.where ((0 <= b) & (b <= a))
c[ind] = \
-(1.0/4.0)*boa[ind]**5.0 \
+(1.0/2.0)*boa[ind]**4.0 \
+(5.0/8.0)*boa[ind]**3.0 \
-(5.0/3.0)*boa[ind]**2.0 \
+1.0
ind = np.where ((a < b) &(b <= 2.0 * a))
c[ind] = (1.0 /12.0)*boa[ind]**5.0 \
-(1.0/2.0 )*boa[ind]**4.0 \
+(5.0/8.0 )*boa[ind]**3.0 \
+(5.0/3.0 )*boa[ind]**2.0 \
- 5.0*boa[ind] \
+ 4.0 \
-(2.0/3.0)*boa[ind]**(-1.0);
Cpp=Cpp*c
return Cpp
#
allmeas = {}
if assim_wav:
print ' > Assim. WAV'
print ' > Reduce WAV ', radar_err_reduce
print ' > ','k'
#read wave dict
wav_member_dir = base_dir+run_id+'/04_wav_adj/'
namep = 'wav_k.nc'
wpick_name = wav_member_dir + namep
wavenc = netCDF4.Dataset(wpick_name)
wavv = wavenc.variables
wavnum = len(wavv['k_x'][:])
wmeas = component(wavnum)
wmeas.data = wavv['k_data'][:]
wmeas.x = wavv['k_x'][:]
wmeas.y = wavv['k_y'][:]
wmeas.s = wavv['k_s'][:] * radar_err_reduce
wmeas.f = wavv['k_f'][:]
wmeas.model = wavv['k_model'][:]
allmeas['k'] = wmeas
if assim_cur:
cur_member_dir = base_dir+run_id+'/04_mem_adj'
print ' > Assim. CUR'
print ' > Reduce CUR ', sar_err_reduce
for field in ['u','v']:
#for field in ['v']:
print ' > ',field
cpick_name = cur_member_dir+'/cur_'+field+'.nc'
curnc = netCDF4.Dataset(cpick_name)
curv = curnc.variables
curnum = len(curv[field+'_x'][:])
cmeas = component(curnum)
cmeas.data = curv[field+'_data'][:]
cmeas.x = curv[field+'_x'][:]
cmeas.y = curv[field+'_y'][:]
cmeas.s = curv[field+'_s'][:] * sar_err_reduce
cmeas.f = curv[field+'_f'][:]
cmeas.model = curv[field+'_model'][:]
allmeas[field] = cmeas
if base_info.sar_const_err is not None:
print ' > SAR const err =', base_info.sar_const_err
allmeas['u'].s = base_info.sar_const_err * np.ones_like(allmeas['u'].s)
allmeas['v'].s = base_info.sar_const_err * np.ones_like(allmeas['v'].s)
####################################################################################
# #SAR err correction when rad data is close
# #the idea is to increase sar error to decreas its effects when we have wave data close
if base_info.increase_sar_err_when_waves and assim_cur and assim_wav:
print ' > Increase SAR err close to Wav data points dist=',\
base_info.wav_cur_data_min_dist,' Coef= ', base_info.cur_data_err_increase_coef
for isar in range(len(allmeas['u'].x)):
dist2 = np.sqrt ( (allmeas['k'].x - allmeas['u'].x[isar])**2+\
(allmeas['k'].y - allmeas['u'].y[isar])**2 )
dist_lim = base_info.wav_cur_data_min_dist
coef = base_info.cur_data_err_increase_coef
dist2_min = max(dist2.min(),5)
if dist2_min < dist_lim :
allmeas['u'].s[isar] = allmeas['u'].s[isar] * coef * dist_lim / dist2_min
allmeas['v'].s[isar] = allmeas['v'].s[isar] * coef * dist_lim / dist2_min
####################################################################################
###
cur_member_dir = base_dir+run_id+'/04_mem_adj/'
namep = 'cur_members_prior.nc'
cpick_name = cur_member_dir + namep
curnc = netCDF4.Dataset(cpick_name)
curv = curnc.variables
hc = curv['h_mems'][:]
xc = curv['x_rho' ][:]
yc = curv['y_rho' ][:]
###
if assim_swf:
swf_member_dir = base_dir+run_id+'/04_swf_adj'
print ' > Assim. SWF'
print ' > Reduce SWF ', swift_err_reduce
for field in ['us','vs']:
#for field in ['v']:
print ' > ',field
cpick_name = swf_member_dir+'/swf_'+field+'.nc'
curnc = netCDF4.Dataset(cpick_name)
curv = curnc.variables
curnum = len(curv[field+'_x'][:])
cmeas = component(curnum)
cmeas.data = curv[field+'_data'][:]
cmeas.x = curv[field+'_x'][:]
cmeas.y = curv[field+'_y'][:]
cmeas.s = curv[field+'_s'][:] * swift_err_reduce
cmeas.f = curv[field+'_f'][:]
cmeas.model = curv[field+'_model'][:]
allmeas[field] = cmeas
####################################################################################
# #SWIFT err correction when SAR data is close
# #the idea is to increase sar error to decreas its effects when we have wave data close
if base_info.increase_swf_err_when_sar and assim_cur and assim_swf:
print ' > Increase SWIFT err close to SAR data points dist=',\
base_info.swf_cur_data_min_dist,' Coef= ', base_info.swf_data_err_increase_coef
for iswf in range(len(allmeas['us'].x)):
dist2 = np.sqrt ( (allmeas['u'].x - allmeas['us'].x[iswf])**2+\
(allmeas['u'].y - allmeas['us'].y[iswf])**2 )
dist_lim = base_info.swf_cur_data_min_dist
coef = base_info.swf_data_err_increase_coef
dist2_min = max(np.abs(dist2.min()),5)
if dist2_min < dist_lim :
allmeas['us'].s[iswf] = allmeas['us'].s[iswf] * coef * dist_lim / dist2_min
allmeas['vs'].s[iswf] = allmeas['vs'].s[iswf] * coef * dist_lim / dist2_min
####################################################################################
#nc_prior = netCDF4.Dataset(inp_dir+'/const/'+prior)
#ncv_prior = nc_prior.variables
#xc = np.squeeze(ncv_prior['x_rho'] [:])
#yc = np.squeeze(ncv_prior['y_rho'] [:])
#hc = np.squeeze(ncv_prior['h'] [:])
#nc_prior.close()
###
###
meas2 = comp_list()
for field in allmeas.keys():
#print field
obj=allmeas[field]
meas2.x = np.hstack((meas2.x , obj.x))
meas2.y = np.hstack((meas2.y , obj.y))
meas2.f = np.hstack((meas2.f , obj.f))
meas2.s = np.hstack((meas2.s , obj.s))
meas2.data = np.hstack((meas2.data , obj.data))
[nn] = meas2.data.shape
#plt.figure()
#plt.scatter(meas2.x,meas2.y,s=50,c=meas2.data,lw=0)
# Read members depth depth
# Assuming ROMS model area has the biggest coverage
[nyc,nxc,Nc] = hc.shape
#### construct model for all obs in dicts
meas2_model = np.zeros((nn,Nc) ,dtype='float')
for il in range(Nc):
test = np.zeros((0) ,dtype='float')
#print il
for field in allmeas.keys():
#print field
obj = allmeas[field]
inp = obj.model[:,il]
test = np.hstack((test,inp))
meas2_model[:,il] = test
meas2.model = meas2_model
measf = meas2
#sys.exit()
#-----------------------------------------
# assimilate
#-----------------------------------------
# We need some measures for observation errors
Cdd = np.diag(measf.s**2.0)
hvec = hc.reshape(nxc*nyc, Nc);
model = measf.model
print ' > Compute model covariances'
Chv = mycov(hvec ,model)
LCvvL = mycov(model,model)
#
xcf = xc.flatten()
ycf = yc.flatten()
ng = len(xcf)
n_meas =len(measf.x)
#
#
if LOCALIZE:
L = localize_len;
print ' > Localizing covariances L=', L, 'm'
if False:
from omegaf_vec import omegaf_vec
Chv ,distg = omegaf_vec( Chv , xcf , ycf , measf.x, measf.y, L, ng , n_meas )
Cdd ,distx = omegaf_vec( Cdd , measf.x, measf.y, measf.x, measf.y, L, n_meas, n_meas )
LCvvL,distx = omegaf_vec( LCvvL, measf.x, measf.y, measf.x, measf.y, L, n_meas, n_meas )
#Chv3 = omega_dist_vec( Chv, xcf , ycf, measf.x, measf.y, L)
#Cdd3 = omega_dist_vec( Cdd, measf.x, measf.y, measf.x, measf.y, L )
#LCvvL3 = omega_dist_vec( LCvvL,measf.x, measf.y, measf.x, measf.y, L )
#
else:
from distg import distg as dist
distg = dist(xcf , ycf, measf.x, measf.y, ng , n_meas )
distx = dist(measf.x , measf.y, measf.x, measf.y, n_meas, n_meas )
Chv = omega_vec (Chv ,distg,L);
Cdd = omega_vec (Cdd ,distx,L);
LCvvL = omega_vec (LCvvL,distx,L);
###########################################################################
[ndata]=measf.data.shape
noise=np.zeros((ndata,Nc))
for n in range (Nc):
noise[:,n] = measf.s * np.random.randn(ndata)
dh=np.zeros_like(hvec)
# assimilate for posterior ensemble. Add random noise to
# observations to ensure correct posterior ensemble covariance
print ' > Assimilating for posterior ensemble'
ChvinvC = np.dot( Chv , np.linalg.inv( LCvvL + Cdd ))
for n in range(Nc):
dh[:,n]= np.dot(ChvinvC,(measf.data+noise[:,n]-model[:,n]))
hpost = hvec+dh
outh = hpost.mean(1).reshape(nyc,nxc)
if False:
print ' > Pickle outputs'
out_pick={'hpost':hpost,'hpri':hvec,'dh':dh,'Chv':Chv, \
'LCvvL':LCvvL,'Cdd':Cdd, 'measf':measf,\
'xc':xc, 'yc':yc}
import cPickle as pickle
pick_name = 'assimilate_out.p'
pickle.dump( out_pick, open(pick_name , "wb" ) )
###########################################################
hpost = hpost.reshape(nyc,nxc,Nc)
hprio = hvec.reshape (nyc,nxc,Nc)
maskh = (hc <-5.0)
hpost = np.ma.masked_array(hpost,maskh)
hprio = np.ma.masked_array(hprio,maskh)
hpost_stdv = hpost.std(2)
hprio_stdv = hprio.std(2)
file_sufix = '_real_data-' + str (base_info.real_data)
file_sufix += '_cur-' + str (base_info.asim_sar)
file_sufix += '_wav-' + str (base_info.asim_wav)
file_sufix += '_swf-' + str (base_info.asim_swf)
file_sufix += '_curJ-' + str (base_info.jump_cur)
file_sufix += '_wavJ-' + str (base_info.jump_wav)
file_sufix += '_CurErr-' + str (sar_err_reduce)
file_sufix += '_WavErr-' + str (radar_err_reduce)
file_sufix += '_SwfErr-' + str (swift_err_reduce)
file_sufix += '_L-' + str (localize_len)
namep = 'assimilate_out'+file_sufix+'.nc'
out_name = assimilate_dir + namep
outnc = netCDF4.Dataset(out_name,'w',format='NETCDF3_CLASSIC')
outnc.createDimension('nx' ,nxc )
outnc.createDimension('ny' ,nyc )
outnc.createDimension('nmem' ,Nc )
outnc.createDimension('nobs' ,len(measf.data))
p0 = outnc.createVariable('x_rho','f8',('ny','nx',))
p0.missing_value = -9999.0
p0[:] = xc
p1 = outnc.createVariable('y_rho','f8',('ny','nx',))
p1.missing_value = -9999.0
p1[:] = yc
p2 = outnc.createVariable('h_post','f8',('ny','nx','nmem'))
p2.missing_value = -9999.0
p2[:] = hpost
p3 = outnc.createVariable('h_prior','f8',('ny','nx','nmem'))
p3.missing_value = -9999.0
p3[:] = hprio
p4 = outnc.createVariable('h_post_std','f8',('ny','nx'))
p4.missing_value = -9999.0
p4[:] = hpost_stdv
p5 = outnc.createVariable('h_prio_std','f8',('ny','nx'))
p5.missing_value = -9999.0
p5[:] = hprio_stdv
p20 = outnc.createVariable('obs_x','f8',('nobs',))
p20.missing_value = -9999.0
p20[:] = measf.x
p21 = outnc.createVariable('obs_y','f8',('nobs',))
p21.missing_value = -9999.0
p21[:] = measf.y
p22 = outnc.createVariable('obs_s','f8',('nobs',))
p22.missing_value = -9999.0
p22[:] = measf.s
p23 = outnc.createVariable('obs_data','f8',('nobs',))
p23.missing_value = -9999.0
p23[:] = measf.data
p24 = outnc.createVariable('obs_f','f8',('nobs',))
p24.missing_value = -9999.0
p24[:] = measf.f
p25 = outnc.createVariable('obs_model','f8',('nobs','nmem',))
p25.missing_value = -9999.0
p25[:] = measf.model
readme = ' \n localiz_length=' + str (localize_len)
readme += ' \n member_num=' + str(Nc)
readme += ' \n base_dir =' + base_dir
readme += ' \n itr =' + str(itr)
readme += ' \n inp_dir =' + inp_dir
readme += ' \n real_data=' + str(base_info.real_data)
readme += ' \n current_opt =' + str (base_info.asim_sar)
readme += ' \n wave_model=' + str (base_info.asim_wav)
readme += ' \n roms2 =' + str (base_info.asim_sar2)
readme += ' \n sar_err_reduction=' + str (base_info.sar_err_reduction)
readme += ' \n radar_err_reduction=' + str (base_info.radar_err_reduction)
readme += ' \n swift=' + str (base_info.asim_swf)
readme += ' \n roms1_data_jump=' + str (base_info.jump_cur)
readme += ' \n wave_data_jump=' + str (base_info.jump_wav)
readme += ' \n curve_grid4uv=' + str (base_info.uv_curv)
readme += ' \n SAR_err_reduce=' + str (sar_err_reduce)
readme += ' \n WAV_err_reduce=' + str (radar_err_reduce)
readme += ' \n SWF_err_reduce=' + str (swift_err_reduce)
outnc.history = '[email protected] wave data structure for assimilation '+datetime.now().isoformat() + readme
#outnc.att= infile[-12:]
outnc.close()
args = sys.argv
scr_name = args[0]
scr_dir1 = os.getcwd()
os.system('cp -fr ' + scr_name + ' ' + assimilate_dir)
os.system('cp -fr base_info.py ' + assimilate_dir)
if True:
figname = assimilate_dir + '/pic_'+file_sufix
figname1 = figname+'.png'
figname2 = figname+'_prior.png'
##### posterior
plt.figure()
plt.pcolor(xc,yc,outh)
plt.clim(-1,7)
plt.colorbar()
plt.contour(xc,yc,outh,colors='k',levels=np.linspace(-2, 8, 12))
plt.savefig(figname1,dpi=450)
##### prior
plt.figure()
plt.pcolor(xc,yc,hvec.mean(1).reshape(nyc,nxc))
plt.clim(-1,7)
plt.colorbar()
plt.contour(xc,yc,hvec.mean(1).reshape(nyc,nxc),colors='k',levels=np.linspace(-2, 8, 12))
plt.savefig(figname2,dpi=450)
print ' END > '
# ################################################################3
# if False:
# xc1 = [0. , 100. , 200., 400.]
#
# yc1 = 2 * xc1
# xc2, yc2 = np.meshgrid(xc1, yc1)
# xc2f = xc2.flatten()
# yc2f = yc2.flatten()
#
#
# mod1 = (xc2f + yc2f + 100)/(xc2f+0.5* yc2f+100)
#
# mod = tile ( (mod1 + np.random.randn(len(mod1)) * mod1.mean()),5).reshape (len(mod1),5)
#
# LCvvL2 = mycov(mod,mod)
#
# plt.figure()
# plt.pcolor(LCvvL2)
# plt.colorbar()
#
# L=1000
# n_meas = len(xc2f)
# LCvvL3,distx = omegaf_vec( LCvvL2, xc2f , yc2f , xc2f , yc2f , L , n_meas, n_meas )
# plt.figure()
# plt.pcolor(LCvvL3)
# plt.colorbar()
#
#
# if False:
# plt.figure()
# plt.imshow(np.flipud(distg))
# plt.title('distg')
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(distx))
# plt.title('distx')
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(Chv[::2,::2]))
# plt.title('Chv')
# plt.clim(-0.0001,0.0001)
# plt.colorbar()
#
#
#
# plt.figure()
# plt.imshow(np.flipud(Chv3))
# plt.title('Chv loc')
# plt.clim(-0.5,0.5)
# plt.colorbar()
#
#
# plt.figure()
# plt.imshow(np.flipud(LCvvL))
# plt.title('LCvvL')
# plt.clim(-0.0001,0.0001)
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(LCvvL2))
# plt.title('LCvvL locf')
# plt.clim(-0.0001,0.0001)
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(LCvvL2))
# plt.title('LCvvL locp')
# plt.clim(-0.0001,0.0001)
# plt.colorbar()
# #close('all')
#
# #if False:
# plt.figure()
# plt.imshow(np.flipud(ChvinvC))
# plt.title('ChvinvC')
# plt.clim(-1,1)
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(ChvinvC2))
# plt.title('ChvinvC loc')
# plt.clim(-1,1)
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(( LCvvL + Cdd )))
# plt.title('( LCvvL + Cdd )')
# plt.clim(-0.01,0.01)
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(inv_LCvvL_Cdd))
# plt.title('inv(LCvvL+Cdd) ')
# plt.clim(-1000,1000)
# plt.colorbar()
#
# plt.figure()
# plt.imshow(np.flipud(inv_LCvvL_Cdd2))
# plt.title('inv(LCvvL+Cdd) loc')
# plt.clim(-1000,1000)
# plt.colorbar()