-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhpo.py
159 lines (124 loc) · 5.4 KB
/
hpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
import copy
import argparse
import os
import logging
import sys
from tqdm import tqdm
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
logger=logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
def test(model, test_loader, criterion):
model.eval()
running_loss=0
running_corrects=0
for inputs, labels in test_loader:
outputs=model(inputs)
loss=criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
total_loss = running_loss // len(test_loader)
total_acc = running_corrects.double() // len(test_loader)
logger.info(f"Testing Loss: {total_loss}")
logger.info(f"Testing Accuracy: {total_acc}")
def train(model, train_loader, validation_loader, criterion, optimizer):
epochs=50
best_loss=1e6
image_dataset={'train':train_loader, 'valid':validation_loader}
loss_counter=0
for epoch in range(epochs):
logger.info(f"Epoch: {epoch}")
for phase in ['train', 'valid']:
if phase=='train':
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in image_dataset[phase]:
outputs = model(inputs)
loss = criterion(outputs, labels)
if phase=='train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss // len(image_dataset[phase])
epoch_acc = running_corrects // len(image_dataset[phase])
if phase=='valid':
if epoch_loss<best_loss:
best_loss=epoch_loss
else:
loss_counter+=1
logger.info('{} loss: {:.4f}, acc: {:.4f}, best loss: {:.4f}'.format(phase,
epoch_loss,
epoch_acc,
best_loss))
if loss_counter==1:
break
if epoch==0:
break
return model
def net():
model = models.resnet50(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Sequential(
nn.Linear(2048, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 133))
return model
def create_data_loaders(data, batch_size):
train_data_path = os.path.join(data, 'train')
test_data_path = os.path.join(data, 'test')
validation_data_path=os.path.join(data, 'valid')
train_transform = transforms.Compose([
transforms.RandomResizedCrop((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
train_data = torchvision.datasets.ImageFolder(root=train_data_path, transform=train_transform)
train_data_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_data = torchvision.datasets.ImageFolder(root=test_data_path, transform=test_transform)
test_data_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=True)
validation_data = torchvision.datasets.ImageFolder(root=validation_data_path, transform=test_transform)
validation_data_loader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, shuffle=True)
return train_data_loader, test_data_loader, validation_data_loader
def main(args):
logger.info(f'Hyperparameters are LR: {args.learning_rate}, Batch Size: {args.batch_size}')
logger.info(f'Data Paths: {args.data}')
train_loader, test_loader, validation_loader=create_data_loaders(args.data, args.batch_size)
model=net()
criterion = nn.CrossEntropyLoss(ignore_index=133)
optimizer = optim.Adam(model.fc.parameters(), lr=args.learning_rate)
logger.info("Starting Model Training")
model=train(model, train_loader, validation_loader, criterion, optimizer)
logger.info("Testing Model")
test(model, test_loader, criterion)
logger.info("Saving Model")
torch.save(model.cpu().state_dict(), os.path.join(args.model_dir, "model.pth"))
if __name__=='__main__':
parser=argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float)
parser.add_argument('--batch_size', type=int)
parser.add_argument('--data', type=str, default=os.environ['SM_CHANNEL_TRAINING'])
parser.add_argument('--model_dir', type=str, default=os.environ['SM_MODEL_DIR'])
parser.add_argument('--output_dir', type=str, default=os.environ['SM_OUTPUT_DATA_DIR'])
args=parser.parse_args()
print(args)
main(args)