-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRcode01_map_eDNA_from_pink_salmon_v02.R
executable file
·283 lines (264 loc) · 11.4 KB
/
Rcode01_map_eDNA_from_pink_salmon_v02.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env Rscript
# -*- coding: utf-8 -*-
# Ideally this code is intended to continue the project
# On environmental DNA from fish found i Norwegian rivers
# As initially presented here:
# https://niva.brage.unit.no/niva-xmlui/handle/11250/2997014
# the aim with this code is to produce figures that
# resembles Fig 6, Fig 7 and Fig 9 in this paper:
# https://hess.copernicus.org/articles/10/277/2006/
#____________________________________________________________________________#
#remove everything in the working environment, without a warning!!
rm(list=ls())
#Install package if required
if(!require(raster)){
install.packages("raster", repos='http://cran.us.r-project.org')
}
library(raster)
#Install package if required
if(!require(rgdal)){
install.packages("rgdal", repos='http://cran.us.r-project.org')
}
library(rgdal)
#Install package if required
if(!require(tidyverse)){
install.packages("tidyverse", repos='http://cran.us.r-project.org')
}
library(tidyverse)
#Install package if required
if(!require(rtop)){
install.packages("rtop", repos='http://cran.us.r-project.org')
}
#get libraries
library(rtop)
library(raster)
library(rgdal)
library(tidyverse)
# install package if required
if(!require(ggplot2)){
install.packages("ggplot2")
library(ggplot2)
}
library(ggplot2)
library(rgdal)
library(dplyr)
#define working directory
wd00 <- "/home/hal9000/Documents/Documents/NIVA_Ansaettelse_2023/MS_pukkellaks_Norge_Elianne_Anette/Rcode_on_eDNA_from_pink_salmon"
wd00 <- "/home/hal9000/Documents/Documents/NIVA_Ansaettelse_2021/fish_eDNA_210130/rtop_on_virik_eDNA/rtop_tryout_2021November"
#rpath <- wd00
# set working directory
setwd(wd00)
#getwd()
# #define input files
# lstfil01 <- list.files(".")
#
# inf1 <- lstfil01[grepl("\\.xls",lstfil01)]
# # read in data frame from local directory
# tibbl_m01<- readxl::read_xlsx(inf1)
# define a variable to decide if the excel file should be fetched from dropbox
get_Norway_eDNA_from_drobbox<- T
# Or read in the excel file from the dropbox folder
if (get_Norway_eDNA_from_drobbox==T)
{print("getting excel file with eDNA levels from drobox")
unlink("GJE_eDNA_samples.xlsx")
GJE_eDNA_file <-"https://www.dropbox.com/scl/fi/bb3pw8r7kl7u31agu6lq4/eDNAsamples_GJE_2021_Rform.xlsx?rlkey=8u2atdwc8g4xd2f58v4rl8rw4&dl=0"
download.file(GJE_eDNA_file, dest="GJE_eDNA_samples.xlsx", method="wget", quiet=T)
unzip ("GJE_eDNA_samples.xlsx", exdir = "./")
#unlink("GJE_eDNA_samples.xlsx")
tibbl_m01 <- readxl::read_xlsx("GJE_eDNA_samples.xlsx")
}
#tibbl_m01
#View(tibbl_m01)
pl01 <- ggplot(tibbl_m01,aes(x=lon,y=lat)) +
theme_bw() +
#geom_point(aes(colour=tot_edna_ngml))
geom_jitter(aes(colour=tot_edna_ngml),
width=4E-3,height = 4E-3)
#pl01
# subset tibble to only include 3 columns
tibbl_m02 <- tibbl_m01[c("lat","lon","tot_edna_ngml")]
#
# add jitter to positions
# The rtop package requires that several points with data along rivers are
# available. Although all these samples and rpelicates have been
# collected at the same postion
# they need to have slightly different positions to make up a larger
# sample size to allow for creating the rtop object
tibbl_m02$jdlat<- jitter(tibbl_m02$lat,0.6)
tibbl_m02$jdlon<- jitter(tibbl_m02$lon,0.6)
#unique(tibbl_m02$jdlon)
#append and rename in data frame
tibbl_m02$lati <- tibbl_m02$jdlat
tibbl_m02$long <- tibbl_m02$jdlon
#define vector with columns to keep
keeps <- c("lati",
"long",
"tot_edna_ngml")
tibbl_m05 <- tibbl_m02
#limit the df to only the columns that are to be kept
df_m04 <- tibbl_m02[keeps]
# say which columns are coordinates, and make it a
# SpatialPointsDataFrame
coordinates(df_m04)=~long+lati
# specify the spatial reference system
# if your coordinates are UTM32, then us "EPSG:25832"
# ours are in lat/lon WGS84
# see https://epsg.io/
#proj4string(df)<- CRS("EPSG:4326")
proj4string(df_m04)<- CRS("+proj=longlat +datum=WGS84")
#plot(df_m04)
# copy the data fram
sdf <- df_m04
# make a SpatialPointsDataFrame but in a different projection
# coordinates(sdf) <- ~lon+lat
proj4string(sdf)<- CRS("EPSG:4326") # set CRS to WGS84
#plot(sdf)
# save as shape file
raster::shapefile(df_m04, paste0(wd00,"/obs_points_N_Norway.shp"),overwrite=TRUE )
#_______________________________________________________________________________
# define dummy predicted locations from the dummy input observations
#_______________________________________________________________________________
#head(tibbl_m05,4)
#make standard deviation for latitude
sdlap <- (max(tibbl_m05$lati)-min(tibbl_m05$lati))*0.32
mlat <- mean(tibbl_m05$lati)
#make standard deviation for longitude
sdlop <- (max(tibbl_m05$long)-min(tibbl_m05$long))*0.42
mlon <- mean(tibbl_m05$long)
#generate sample of 200 obs. that follows normal dist. with mean= and sd= as
# defined by latitude and longitude limits above
predict_lat <- rnorm(200, mean=mlat, sd=sdlap)
predict_lon <- rnorm(200, mean=mlon, sd=sdlop)
#combine in a dataframe
df_pred01 <- as.data.frame(cbind(predict_lat,predict_lon))
df_pred02 <- df_pred01
#head(df_pred02,3)
#plot the dummy predicted locations
# dev.off()
#plot(df_pred01)
# plot(df_pred02, col="blue")
# say which columns are coordinates
coordinates(df_pred01)=~predict_lon+predict_lat
# specify the spatial reference system
# if your coordinates are UTM32, then us "EPSG:25832"
# ours are in lat/lon WGS84
# see https://epsg.io/
#proj4string(df_pred01)<- CRS("EPSG:4326")
proj4string(df_pred01)<- CRS("+proj=longlat +datum=WGS84")
#see the points plotted
#plot(df_pred01)
# e.g. if you want to transform to UTM32
new_prj_prd <- CRS("EPSG:25832")
dfUTM32_prd<-spTransform(df_pred01,new_prj_prd)
# save as shape file
raster::shapefile(df_pred01, "predicted_obs_points_N_Norway.shp",overwrite=TRUE )
#_______________________________________________________________________________
#_______________________________________________________________________________
# To get a map of rivers in Norway look at these websites
# see: https://gis.stackexchange.com/questions/317744/seeking-norwegian-waterlines-and-water-bodies-shapefile
# and see: https://kartkatalog.geonorge.no/metadata/norges-vassdrags-og-energidirektorat/vannforekomster/b203e422-5270-4efc-93a5-2073725c43ef
# and see: https://nedlasting.nve.no/gis/
# If you use 'https://nedlasting.nve.no/gis/' it is a 4 step process to get the
# map data
# 01 - first select the data under (1) - I selected 'Vektordata' and ticked in 'Elv', 'Insjø' and other water bodies, and then selected 'NESTE'
# 02 - Then under (2) I then selected ESRI .shp file, and WGS84 breddegrader/lengdegrader, and under utvalgsmetode I selected 'Helt innenfor', I select 'Velg på kart' under 'Velg dekningsområde' and zoomed th map to fit the region I wanted to focus on , then selected 'NESTE'
# 03 - this part is simple. Fill out your contact details to get the file
# 04 - this part is also simple, just click to complete and get the file posted to you
# The river maps are also placed here
#https://www.dropbox.com/scl/fi/7xafevro61agrehhlrdaw/NVE_60751B14_1689328325787_768.zip?rlkey=ho28jcm7ij5r2mujjmhdljpc8&dl=0
unlink("NVEData", recursive=TRUE)
unlink("Metadata", recursive=TRUE)
#Check if a path for the directory for the rivers have been defined
# set a variable to define whether the remote drob box file should be downloaded
get_Norway_rivers_from_drobbox <- T
# if not then get the zip file. Unpack it. Make a path to the river shape
#directory and then remove the zip file
if (get_Norway_rivers_from_drobbox==T)
{print("getting shape file with rivers from drobox")
unlink("NVE_rivers.zip")
NVE_zip_file <- "https://www.dropbox.com/scl/fi/7xafevro61agrehhlrdaw/NVE_60751B14_1689328325787_768.zip?rlkey=ho28jcm7ij5r2mujjmhdljpc8&dl=0"
download.file(NVE_zip_file, dest="NVE_rivers.zip", method="wget", quiet=T)
unzip ("NVE_rivers.zip", exdir = "./")
unlink("NVE_rivers.zip")
#define the path for the directory where the unzipped downloaded river files are placed
rpath_Norway_rivers <- "NVEData/Elv"
}
#define the path for the directory where the unzipped downloaded river files are placed
#paste path together
rpath_NR <- paste(wd00,"/",rpath_Norway_rivers,sep="")
#rpath_NR <- "/home/hal9000/Documents/Documents/NIVA_Ansaettelse_2021/fish_eDNA_210130/NVE_60751B14_1635507782111_11488/NVEData/Elv"
# read in the river shape files
rnet = rgdal::readOGR(rpath_NR, "Elv_Hovedelv")
rpath_Norway_rivers <- "NVEData/Elv"
# remove directories recursively
unlink("Metadata", recursive=TRUE)
unlink("NVEData", recursive=TRUE)
# #turn off previous plots
# #dev.off()
outfilpth <- paste0(wd00,"/Fig01_v01_plot_rivers_obs_and_predicts.png")
# # # Exporting PNG files via postscript()
png(c(outfilpth))
# 1 mm = 0.03937008 inches
#width=(210*0.03937008),
#height=(297*0.03937008))
# #____________________________________________________________________
op <- par(mfrow=c(1,1), # set number of panes inside the plot - i.e. c(2,2) would make four panes for plots
oma=c(1,1,0,0), # set outer margin (the margin around the combined plot area) - higher numbers increase the number of lines
mar=c(1,1,1,1) # set the margin around each individual plot
)
#plot the river network
plot(rnet, col="blue")
# add the predicted points to the plot
plot(df_pred01, add=T, col="yellow")
# add the observed points to the plot
plot(sdf, add=T, pch=21, col="red")
# #apply the par settings for the plot as defined above.
par(op)
#close the png
dev.off()
#__________ __________
#__________ __________
#__________ __________
# try an example with the 'rtop' package
#https://rdrr.io/rforge/rtop/man/rtop-package.html
# I commented this part out, as it worked alright, but did not give the
# intended result. It returns smaller iregular polygons inside a country
# representing municipalities or similar, color coded to a z-value
# But I wanted: Something that resembles Fig 6, Fig 7 and Fig 9 in this paper:
# https://hess.copernicus.org/articles/10/277/2006/
# example with the 'rtop' package
#https://rdrr.io/rforge/rtop/man/rtop-package.html
# library(rgdal)
# rpath = system.file("extdata",package="rtop")
# observations = readOGR(rpath,"observations")
# class(observations) # it is a '"SpatialPolygonsDataFrame"'
# # head(observations,3)
# # ID EZGID AREASQKM XSTATION YSTATION QSUMMER_OB obs
# # 0 60 60 43.98384 444255 519555 0.3675 0.008355342
# # 1 113 113 13.64314 410740 471559 0.1676 0.012284566
# # 2 227 227 37.40618 507123 505187 0.4241 0.011337700
# # Create a column with the specific runoff:
# observations$obs = observations$QSUMMER_OB/observations$AREASQKM
# predictionLocations = readOGR(rpath,"predictionLocations")
# class(predictionLocations) # it is a '"SpatialPolygonsDataFrame"'
# # head(predictionLocations,3)
# # ID EZGID AREASQKM XSTATION YSTATION
# # 0 76 76 35.98214 490602 523496
# # 1 77 77 38.48705 490602 523496
# # 2 82 82 15.90664 442364 514959
# params = list(gDist = TRUE, cloud = TRUE)
# rtopObj = createRtopObject(observations, predictionLocations,
# params = params)
#
# rtopObj = rtopVariogram(rtopObj) # This is fast to run
# rtopObj = rtopFitVariogram(rtopObj) # This takes a while to run
# rtopObj = rtopKrige(rtopObj) # # This is fast to run
# spplot(rtopObj$predictions, col.regions = bpy.colors(),
# c("var1.pred","var1.var"))
# rtopObj = rtopKrige(rtopObj, cv = TRUE)
# spplot(rtopObj$predictions, col.regions = bpy.colors(),
# c("var1.pred","var1.var"))
# This part above did not return the plot I hoped for
#__________
#__________
#