-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRcode04_plot_smpl_pnts_on_map_2021nov_v05.R
935 lines (836 loc) · 31.2 KB
/
Rcode04_plot_smpl_pnts_on_map_2021nov_v05.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
#!/usr/bin/env Rscript
# -*- coding: utf-8 -*-
#____________________________________________________________________________#
# R-code provided for the project:
# on eDNA from Virik
# Authors: Steen Wilhelm Knudsen.
# Change the working directory to a path on your own computer , and run
# the individual parts below to reproduce the diagrams presented in the paper
#
# All input data required needs to be available as csv-files in the same directory
# as this R-code use for working directory.
#
# Occassionally the code will have difficulties producing the correct diagrams,
# if the packages and libraries are not installed.
# Make sure the packages are installed, and libraries are loaded, if the R-code
# fails in producing the diagrams.
#
#________________IMPORTANT!!_________________________________________________#
# (1)
#You have to change the path to the working directory before running this code
#
# (2)
# must be located in the same working directory - as specified in the code below
#
#This code is able to run in:
#
#____________________________________________________________________________#
#remove everything in the working environment, without a warning!!
rm(list=ls())
#see this
#website
#on how to only install required packages
#https://stackoverflow.com/questions/4090169/elegant-way-to-check-for-missing-packages-and-install-them
if (!require("pacman")) install.packages("pacman")
pacman::p_load(
scales,
fields,
gplots,
plyr)
## install the package 'scales', which will allow you to make points on your plot more transparent
#install.packages("scales")
if(!require(scales)){
install.packages("scales")
library(scales)
}
library(scales)
#install.packages("fields")
if(!require(fields)){
install.packages("fields")
library(fields)
}
library(fields)
## install the package 'gplots', to be able to translate colors to hex - function: col2hex
#install.packages("gplots")
if(!require(gplots)){
install.packages("gplots")
library(gplots)
}
library(gplots)
## install the package 'glad', to be able to color using the function 'myPalette'
#install.packages("glad")
#library(glad)
if(!require(graphics)){
install.packages("graphics")
library(graphics)
}
library(graphics)
## install the package 'marmap', which will allow you to plot bathymetric maps
#install.packages("marmap")
#library(marmap)
#get the package that enables the function 'subplot'
#install.packages("TeachingDemos")
#library(TeachingDemos)
#get package to make maps
#install.packages("rworldmap")
#require (rworldmap)
#install.packages("rworldxtra")
#require(rworldxtra)
#get package to read excel files
#install.packages("readxl")
#library(readxl)
#get package to do count number of observations that have the same value at earlier records:
# see this website: https://stackoverflow.com/questions/11957205/how-can-i-derive-a-variable-in-r-showing-the-number-of-observations-that-have-th
#install.packages("plyr")
# install package if required
if(!require(plyr)){
install.packages("plyr")
library(plyr)
}
library(plyr)
#get package to make maps - see this website: http://www.molecularecologist.com/2012/09/making-maps-with-r/
#install.packages("mapdata")
#library(mapdata)
# install package if required
if(!require(officer)){
install.packages("officer")
library(officer)
}
#library(ReporteRs)
library(officer)
#install.packages("tableHTML")
#https://cran.r-project.org/web/packages/tableHTML/vignettes/tableHTML.html
# install package if required
if(!require(tableHTML)){
install.packages("tableHTML")
library(tableHTML)
}
# install package if required
if(!require(envDocument)){
install.packages("envDocument")
library(envDocument)
}
# install package if required
if(!require(ggplot2)){
install.packages("ggplot2")
library(ggplot2)
}
library(ggplot2)
library(dplyr)
#define working directory
wd00="/home/hal9000/Documents/Documents/NIVA_Ansaettelse_2021/fish_eDNA_210130/rtop_on_virik_eDNA"
wd00 <- "/home/hal9000/Documents/Documents/NIVA_Ansaettelse_2021/fish_eDNA_210130/rtop_on_virik_eDNA/rtop_tryout_2021November"
#wd00 <- "/Users/steenknudsen/Documents/Documents/NIVA_Ansaettelse_2020/NOVANA_proever_2018_2019"
#wd00 <- "/home/hal9000/test_plot_jpg_instead_of_pdf/"
# define output and input directories
# wd01 <- "out01_std_curve_plots_from_R"
# #make complete path to output dir
# wd00_wd01 <- paste(wd00,"/",wd05,sep="")
# #check the wd
# #Delete any previous versions of the output directory
# unlink(wd00_wd01, recursive=TRUE)
# #Create a directory to put resulting output files in
# dir.create(wd00_wd01)
# set working directory
setwd(wd00)
getwd()
#define input files
lstfil01 <- list.files(".")
inf1 <- lstfil01[grepl("\\.txt",lstfil01)]
#inf1 <- inf1[grepl("virik",inf1)]
#inf1 <- inf1[grepl("akersvan",inf1)]
# make a number to count elements
i <- 1
# make an empty list
lsf2 <- list()
# iterate over files
for (f in inf1){
#read in the file as a df
dfs01 <- as.data.frame(read.csv(f,
header = TRUE,
sep = "\t", quote = "\"",
dec = ".", fill = TRUE,
comment.char = "",
stringsAsFactors = FALSE))
# add the filename as a varirable
dfs01$flnm <- as.character(f)
colnames(dfs01) <- gsub("stasjon","station",colnames(dfs01))
#make sure all columns are characters
# to allow dplyr to combine them all
#https://stackoverflow.com/questions/43789278/convert-all-columns-to-characters-in-a-data-frame
dfs01 <- dfs01 %>%
mutate_all(as.character)
# add it to the list
lsf2[[i]] <- dfs01
# add to the increasing count
i <- i+1
#end iteration over files
}
library(dplyr)
#bind rows together
# with dplyr
# https://stackoverflow.com/questions/16138693/rbind-multiple-data-sets
tbl_lsf2 <- bind_rows(lsf2)
df02 <- as.data.frame(tbl_lsf2)
#sustitute to get species name
df02$gen_specnm <- gsub("^eDNAconc_([A-Za-z]+)_[A-Za-z]+\\.txt","\\1",df02$flnm)
df02$vatten <- gsub("^eDNAconc_([A-Za-z]+)_([A-Za-z]+)\\.txt","\\2",df02$flnm)
#unique(df02$gen_specnm)
df02$gen_specnm <- gsub("pinksal","Ogorbuscha",df02$gen_specnm )
df02$gen_specnm <- gsub("achar","Salpinus",df02$gen_specnm )
df02$gen_specnm <- gsub("trout","Omykiss",df02$gen_specnm )
#getwd()
# specify columns to make numeric
columnstonum <- c("Sample","Cq","SQ","sample_rep","tech_rep","dyp",
"volum","SQ_vol","lat","lon","dist_hav")
#make specified columns numeric
df02[, columnstonum] <- lapply(columnstonum, function(x) as.numeric(df02[[x]]))
####################################################################################
######################################################################################
df02$sample_rep2 <- as.character(df02$sample_rep)
#df02$station <- df02$stasjon
df02$station[grepl("virik",df02$vatten)]
df02$stat_insj <- paste(df02$station,"_",df02$innsjo,sep="")
df02$stat_vatt <- paste(df02$station,"_",df02$vatten ,sep="")
unique(df02$stat_vatt)
unique(df02$stat_insj)
plt01 <- ggplot2::ggplot(df02, aes(x = stat_vatt,
y = SQ_vol,
group= sample_rep,
#color = sample_rep)) +
shape=sample_rep2,
color = gen_specnm)) +
geom_point()
plt01
#read in file with positions for sampling sites
#plot(df02$station,df02$SQ_vol, pch=3)
#define list of flies
lfx <- list.files(".")[grepl("xls",list.files("."))]
lfxp <- lfx[grepl("lokaliteter",lfx)]
#read in excel sheet as tibble
tb_prlo2021 <- readxl::read_xlsx(lfxp, sheet="samples 2021")
tb_prlo2020 <- readxl::read_xlsx(lfxp, sheet="samples 2020")
# make it a data frame
df_pro2020 <- as.data.frame(tb_prlo2020)
df_pro2021 <- as.data.frame(tb_prlo2021)
#paste station and insjoe together
df_pro2020$st_insj <- paste(df_pro2020$Stasjon,"_",df_pro2020$Innsjø,sep="")
df_pro2021$st_insj <- paste(df_pro2021$Stasjon,"_",df_pro2021$Innsjø,sep="")
#
#make sure all columns are characters
# to allow dplyr to combine them all
#https://stackoverflow.com/questions/43789278/convert-all-columns-to-characters-in-a-data-frame
df_pro2020 <- df_pro2020 %>%
mutate_all(as.character)
df_pro2021 <- df_pro2021 %>%
mutate_all(as.character)
#
library(dplyr)
#bind rows together
# with dplyr
lstdf3 <- list(df_pro2020,df_pro2021)
# https://stackoverflow.com/questions/16138693/rbind-multiple-data-sets
tbl_pro2 <- dplyr::bind_rows(lstdf3)#, .id="`Løpenr (2019)`")
#make it a data frame
dfpro02 <- as.data.frame(tbl_pro2)
# get unique station locations
st1.2020 <- unique(df_pro2020$st_insj)
st1.2021 <- unique(df_pro2021$st_insj)
# bind columns to a data frame
df_st2.2020 <- as.data.frame(cbind(st1.2020))
df_st2.2021 <- as.data.frame(cbind(st1.2021))
# add latitude
df_st2.2020$dlat <- df_pro2020$Posisjon...31[match(df_st2.2020$st1.2020,df_pro2020$st_insj)]
df_st2.2021$dlat <- df_pro2021$Posisjon...34[match(df_st2.2021$st1.2021,df_pro2021$st_insj)]
#match longitude
df_st2.2020$dlon <- df_pro2020$Posisjon...32[match(df_st2.2020$st1.2020,df_pro2020$st_insj)]
df_st2.2021$dlon <- df_pro2021$Posisjon...35[match(df_st2.2021$st1.2021,df_pro2021$st_insj)]
#match the municipality area
df_st2.2020$Fylke <- df_pro2020$Fylke[match(df_st2.2020$st1.2020,df_pro2020$st_insj)]
df_st2.2021$Fylke <- df_pro2021$Fylke[match(df_st2.2021$st1.2021,df_pro2021$st_insj)]
#make a column for years
df_st2.2020$year <- 2020
df_st2.2021$year <- 2021
#replace column names
colnames(df_st2.2020)[1] <- "st_insj"
colnames(df_st2.2021)[1] <- "st_insj"
#bind rows together
df_st2.2020_2021 <- rbind(df_st2.2020,df_st2.2021)
#unique(df_st2.2020_2021$st_insj)
df_st2 <- df_st2.2020_2021
#unique(df02$stat_vatt)
df02$stat_vatt2 <- df02$stat_vatt
df02$stat_vatt2 <- gsub("_virik","_Virikbekken",df02$stat_vatt2)
df02$stat_vatt2 <- gsub("_akersvannet","_Akersvannet",df02$stat_vatt2)
#unique(df02$stat_vatt2)
df_st2$st_insj[grepl("Torskevannet",df_st2$st_insj)] <- "Torskevannet"
df02$stat_vatt2[grepl("TV",df02$stat_vatt2)] <- "Torskevannet"
df_st2$st_insj[grepl("Loven",df_st2$st_insj)] <- "Lovensjoen"
df02$stat_vatt2[grepl("LS",df02$stat_vatt2)] <- "Lovensjoen"
df_st2$st_insj[grepl("Bretjørna",df_st2$st_insj)] <- "Bretjørna"
df02$stat_vatt2[grepl("BT",df02$stat_vatt2)] <- "Bretjørna"
#ensure the lat and lon are numeric
df_st2$dlat <- as.numeric(as.character(df_st2$dlat))
df_st2$dlon <- as.numeric(as.character(df_st2$dlon))
# match the lat and long to df with qCR data
df02$dlat <- df_st2$dlat[match(df02$stat_vatt2,df_st2$st_insj)]
df02$dlon <- df_st2$dlon[match(df02$stat_vatt2,df_st2$st_insj)]
# split column with 'prove nummer'
dfprNo01 <- data.frame(do.call('rbind', strsplit(as.character(dfpro02$Prøvenr),', ',fixed=TRUE)))
#modify NAs in catch positions
dfpro02$Posisjon...31[is.na(dfpro02$Posisjon...31)] <- ""
dfpro02$Posisjon...32[is.na(dfpro02$Posisjon...32)] <- ""
dfpro02$Posisjon...34[is.na(dfpro02$Posisjon...34)] <- ""
dfpro02$Posisjon...35[is.na(dfpro02$Posisjon...35)] <- ""
#make them characters
dfpro02$Posisjon...31 <- as.character(dfpro02$Posisjon...31)
dfpro02$Posisjon...32 <- as.character(dfpro02$Posisjon...32)
dfpro02$Posisjon...34 <- as.character(dfpro02$Posisjon...34)
dfpro02$Posisjon...35 <- as.character(dfpro02$Posisjon...35)
#paste them together
dfpro02$Posisjon.lat <- paste(dfpro02$Posisjon...31,dfpro02$Posisjon...34,sep="")
dfpro02$Posisjon.lon <- paste(dfpro02$Posisjon...32,dfpro02$Posisjon...35,sep="")
#bind together columns with filtered volume
dfPV1 <- cbind(dfprNo01[1],dfpro02$`Volum 1`)
dfPV2 <- cbind(dfprNo01[2],dfpro02$`Volum 2`)
dfPV3 <- cbind(dfprNo01[3],dfpro02$`Volum 3`)
dfPlat1 <- cbind(dfprNo01[1],dfpro02$Posisjon.lat)
dfPlat2 <- cbind(dfprNo01[2],dfpro02$Posisjon.lat)
dfPlat3 <- cbind(dfprNo01[3],dfpro02$Posisjon.lat)
dfPlon1 <- cbind(dfprNo01[1],dfpro02$Posisjon.lon)
dfPlon2 <- cbind(dfprNo01[2],dfpro02$Posisjon.lon)
dfPlon3 <- cbind(dfprNo01[3],dfpro02$Posisjon.lon)
#change column names
colnames(dfPV1) <- c("ProvNo","VolFilt_mL")
colnames(dfPV2) <- c("ProvNo","VolFilt_mL")
colnames(dfPV3) <- c("ProvNo","VolFilt_mL")
colnames(dfPlat1) <- c("ProvNo","Plat")
colnames(dfPlat2) <- c("ProvNo","Plat")
colnames(dfPlat3) <- c("ProvNo","Plat")
colnames(dfPlon1) <- c("ProvNo","Plon")
colnames(dfPlon2) <- c("ProvNo","Plon")
colnames(dfPlon3) <- c("ProvNo","Plon")
#append as more rows and make it a data frame
dfprNo02 <- as.data.frame(rbind(dfPV1,dfPV2,dfPV3))
dfprNo.lat <- as.data.frame(rbind(dfPlat1,dfPlat2,dfPlat3))
dfprNo.lon <- as.data.frame(rbind(dfPlon1,dfPlon2,dfPlon3))
# specify columns to make numeric
columnstonum <- c("ProvNo","Plon")
#make specified columns numeric
dfprNo.lon[, columnstonum] <- lapply(columnstonum, function(x) as.numeric(dfprNo.lon[[x]]))
# specify columns to make numeric
columnstonum <- c("ProvNo","Plat")
#make specified columns numeric
dfprNo.lat[, columnstonum] <- lapply(columnstonum, function(x) as.numeric(dfprNo.lat[[x]]))
#match lat and long back to data frame with sample numbers
dfprNo02$Plat <- dfprNo.lat$Plat[match(dfprNo02$ProvNo,dfprNo.lat$ProvNo)]
dfprNo02$Plon <- dfprNo.lon$Plon[match(dfprNo02$ProvNo,dfprNo.lon$ProvNo)]
#ensure columns are numeric values
dfprNo02$ProvNo <- as.numeric(dfprNo02$ProvNo)
dfprNo02$VolFilt_mL <- as.numeric(dfprNo02$VolFilt_mL)
#match filtered volume to main data frame
df02$VolFilt_mL <- dfprNo02$VolFilt_mL[match(df02$Sample,dfprNo02$ProvNo)]
df02$VolFilt_mL[is.na(df02$VolFilt_mL)] <- 0
#match lat and long to main data frame
df02$dlat <- dfprNo02$Plat[match(df02$Sample,dfprNo02$ProvNo)]
df02$dlon <- dfprNo02$Plon[match(df02$Sample,dfprNo02$ProvNo)]
#make the columns with ølatitude and longitude numeric
df02$dlat <- as.numeric(df02$dlat)
df02$dlon <- as.numeric(df02$dlon)
#remove rows that do not have a lat and long postion
df02 <- df02[!is.na(df02$dlat),]
df02 <- df02[!is.na(df02$dlon),]
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Plot on map -start
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# https://uchicagoconsulting.wordpress.com/tag/r-ggplot2-maps-visualization/
#install packages needed
if(!require(maps)){
install.packages("maps")
library(maps)
}
if(!require(ggplot2)){
install.packages("ggplot2")
library(ggplot2)
}
library(ggplot2)
library(maps)
# # #https://www.r-spatial.org/r/2018/10/25/ggplot2-sf-2.html
# To get rgdal and googleway to work,
#first run these in a terminal:
# $ sudo apt install netcdf-*
# $ sudo apt install libnetcdf-dev
# $ sudo apt install libjq-dev
# $ sudo apt install gdal-bin libgdal-dev libproj-dev
# $ sudo apt install libudunits2-dev
if(!require(cowplot)){
install.packages("cowplot")
library(cowplot)
}
if(!require(googleway)){
install.packages("googleway")
library(googleway)
}
if(!require(ggrepel)){
install.packages("ggrepel")
library(ggrepel)
}
if(!require(ggspatial)){
install.packages("ggspatial")
library(ggspatial)
}
# if(!require(libwgeom)){
# install.packages("libwgeom")
# library(libwgeom)
# }
if(!require(sf)){
install.packages("sf")
library(sf)
}
if(!require(rnaturalearth)){
install.packages("rnaturalearth")
library(rnaturalearth)
}
if(!require(rnaturalearthdata)){
install.packages("rnaturalearthdata")
library(rnaturalearthdata)
}
#install rgeos
if(!require(rgeos)){
install.packages("rgeos")
library(rgeos)
}
#get 'rnaturalearthhires' installed
if(!require(rnaturalearthhires)){
#install.packages("rnaturalearthhires")
install.packages("rnaturalearthhires", repos = "http://packages.ropensci.org", type = "source")
library(rnaturalearthhires)
}
# #
library("ggplot2")
theme_set(theme_bw())
library("sf")
#install.packages("rnaturalearthhires", repos = "http://packages.ropensci.org", type = "source")
# #
library("rnaturalearth")
library("rnaturalearthdata")
library("rnaturalearthhires")
# # Get a map, use a high number for 'scale' for a coarse resolution
# use a low number for scale for a high resolution
# if the map 'world' does not exist, then download it
if (!exists("norw_map"))
{
norw_map <- ne_countries(country="norway",scale = 10, returnclass = "sf") %>% st_as_sf()
}
#change color scheme:
# https://stackoverflow.com/questions/53750310/how-to-change-default-color-scheme-in-ggplot2
#https://data-se.netlify.app/2018/12/12/changing-the-default-color-scheme-in-ggplot2/
library(viridis)
opts <- options() # save old options
#get max and min lat and lon
mxlat <- max(df02$dlat)
mnlat <- min(df02$dlat)
mxlon <- max(df02$dlon)
mnlon <- min(df02$dlon)
#add and subtract on from min and max
mxlatp1 <- mxlat+1
mnlatp1 <- mnlat-1
mxlonp1 <- mxlon+1
mnlonp1 <- mnlon-1
#round down
mnlonp1 <- floor(mnlonp1)
mnlatp1 <- floor(mnlatp1)
#round up
mxlonp1 <- ceiling(mxlonp1)
mxlatp1 <- ceiling(mxlatp1)
df02$gen_specnm <- as.character(df02$gen_specnm)
df02$gen_specnm <- gsub("eDNAconc_(.*)_(.*).txt","\\1",df02$gen_specnm)
flet1 <- gsub("(^[A-Za-z]{1}).*","\\1",df02$gen_specnm)
flet2 <- gsub("(^[A-Za-z]{1})(.*)","\\2",df02$gen_specnm)
#Change to uppercase and paste strings together
df02$gen_specnm2 <- paste(toupper(flet1),". ",flet2,sep="")
#replace nas w zero
df02$SQ_vol[is.na(df02$SQ_vol)] <- 0
# make numeric
df02$SQ_vol <- as.numeric(df02$SQ_vol)
df02$SQ_v.l10p1 <- log10(df02$SQ_vol+1)
# define plot symbols
df02$pch.symb <- NA
df02$pch.symb[df02$SQ_vol==0] <- 3
df02$pch.symb[df02$SQ_vol>0] <- 21
df02$pch.symb <- as.character(df02$pch.symb)
df02$eval1 <- NA
df02$eval1[df02$SQ_vol==0] <- "zero"
df02$eval1[df02$SQ_vol>0] <- "above zero"
#head(df02,4)
#http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
# The palette with black:
cbbPalette <- c("#000000", "#E69F00", "#56B4E9",
"#009E73", "#F0E442", "#0072B2",
#"#D55E00",
"#CC79A7")
cl <- cbbPalette
# get volume filtered in Liter
df02$VolFilt_L <- df02$VolFilt_mL/1000
#Elianne eluerte i 150 microL TE elueringsbuffer.
# Brukte 5 microL som templat i hver qPCR reaksjon.
# Så er der 150/5 * kopier i en ekstraktion
# En ekstraktion repræsenterer 'df02$VolFilt_L' af 1 L
#calculate copies per Liter
df02$SQpL <- df02$SQ*(150/5)*(1/df02$VolFilt_L)
#calculate copies per mili Liter
df02$SQpmL <- df02$SQpL*1000
#st_crs(norw_map)
# define level of jitter on each point
jitlvl <- 0.004
#count number of species , as you need to know this count
# set the columns and rows for the facet part in the ggplot
#length(unique(df02$gen_specnm2))
# plot on map
# also see : https://github.com/tidyverse/ggplot2/issues/2037
p01 <- ggplot(data = norw_map) +
#p01 <- ggplot(st_transform(norw_map, 4326)) +
geom_sf(color = "black", fill = "azure3") +
#no transformation
geom_jitter(data = df02,
aes(x = dlon, y = dlat, #,
color=gen_specnm2,
fill=SQpmL,
shape=eval1),
width = jitlvl, #0.07, jitter width
height = jitlvl, #0.07, # jitter height
#size = df02$SQ_v.l10p1*1000000) +
size = 3) +
#define shape of points
scale_shape_manual(values=c(21,3)) +
# split in mulitple plots per group
facet_wrap(~gen_specnm2, nrow = 1, ncol=6) + #'facet_wrap' subsets by column value in dataframe
#define colour gradient for fill
scale_fill_gradient2(low = "white", mid = "white", high = "blue",
guide = guide_colorbar(order = 1)) +
# scale_fill_manual(values=alpha(
# c(cl),
# c(0.7)
# ))+
# #transformed
#define limits of map
# ggplot2::coord_sf(xlim = c(9.5, 10.5),
# ylim = c(59, 59.3),
# expand = FALSE)
ggplot2::coord_sf(xlim = c(4, 33),
ylim = c(58, 83),
expand = FALSE)
p01 <- p01 + xlab("longitude") + ylab("latitude")
# see the plot
p01
p01b <- p01
# you will have to change the legend for all legends
p01b <- p01b + labs(color='species')
p01b <- p01b + labs(fill='mean copies/ mL filt water')
p01b <- p01b + labs(shape='eDNA presence')
head(df02,3)
library(dplyr)
# get mean per group
tbl03 <- df02 %>% # Specify data frame
dplyr::group_by(Sample,gen_specnm2) %>% # Specify group indicator
dplyr::summarise_at(vars(SQpmL), # Specify column
list(SQm = mean))
#make it a data frame
df03 <- as.data.frame(tbl03)
# set NAs to zero
df03$SQm[is.na(df03$SQm)] <- 0
# make numeric
df03$SQm <- as.numeric(df03$SQm)
#match other values
df03$dlat <- df02$dlat[match(df03$Sample,df02$Sample)]
df03$dlon <- df02$dlon[match(df03$Sample,df02$Sample)]
#define evaluation category
df03$eval1 <- NA
df03$eval1[df03$SQm==0] <- "zero"
df03$eval1[df03$SQm>0] <- "above zero"
df03$SQmean <- df03$SQm
#
#getwd()
write.table(df03,"mean_eDNA_conc_allfish_allcollection_points.csv", sep=",",
dec=".")
#define vector with S Norway species
NoSsp <- c("E. lucius","S. trutta")
# subset data frame by matching the elements in the vector defined above
df04 <- subset(df03, subset = gen_specnm2 %in% NoSsp)
#_______________________________________________________________________________
# also see : https://github.com/tidyverse/ggplot2/issues/2037
# also see : https://github.com/tidyverse/ggplot2/issues/2037
p02 <-
ggplot(data = norw_map) +
#ggplot(st_transform(norw_map, 9122)) +
geom_sf(color = "black", fill = "azure3") +
geom_jitter(data = df04,
aes(x = dlon, y = dlat, #,
color=gen_specnm2,
fill=SQmean,
shape=eval1),
width = jitlvl, #0.07, jitter width
height = jitlvl, #0.07, # jitter height
size = 3) +
#define shape of points
scale_shape_manual(values=c(21,3)) +
# define outline of each pch point
scale_color_manual(values=c("purple","red")) +
# split in mulitple plots per group
facet_wrap(~gen_specnm2, nrow = 1, ncol=2) + #'facet_wrap' subsets by column value in dataframe
#define colour gradient for fill
# scale_fill_gradient2(low = "white", mid = "white", high = "blue",
# guide = guide_colorbar(order = 1)) +
#scale_fill_gradientn(colors = heat.colors(10),
scale_fill_gradientn(colors = alpha(c("white","red","black"),0.6),
guide = guide_colorbar(order = 1)) +
#define limits of map
ggplot2::coord_sf( xlim = c(10.15, 10.35) ,
#xlim = c(10.3, 10.4),
ylim = c(59.065, 59.265),
#ylim = c(59.165, 59.265),
default_crs = sf::st_crs(4326),
expand = FALSE)
p02 <- p02 + xlab("longitude") + ylab("latitude")
# see the plot
p02
p02b <- p02
# you will have to change the legend for all legends
p02b <- p02b + labs(color='species')
p02b <- p02b + labs(fill='mean copies/ mL filt water')
p02b <- p02b + labs(shape='eDNA presence')
#https://stackoverflow.com/questions/57153428/r-plot-color-combinations-that-are-colorblind-accessible
# colorBlindBlack8 <- c("#000000", "#E69F00", "#56B4E9", "#009E73",
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
# pie(rep(1, 8), col = colorBlindBlack8)
#define vector with S Norway species
NoNsp <- c("O. gorbuscha","O. mykiss",
"S. alpinus", "S. salar")
# subset data frame by matching the elements in the vector defined above
df04 <- subset(df03, subset = gen_specnm2 %in% NoNsp)
#_______________________________________________________________________________
# also see : https://github.com/tidyverse/ggplot2/issues/2037
# also see : https://github.com/tidyverse/ggplot2/issues/2037
p04 <-
ggplot(data = norw_map) +
#ggplot(st_transform(norw_map, 9122)) +
geom_sf(color = "black", fill = "azure3") +
geom_jitter(data = df04,
aes(x = dlon, y = dlat, #,
color=gen_specnm2,
fill=SQmean,
shape=eval1),
width = jitlvl, #0.07, jitter width
height = jitlvl, #0.07, # jitter height
size = 3) +
#define shape of points
scale_shape_manual(values=c(21,3)) +
# define outline of each pch point
scale_color_manual(values=c("#E69F00", "#56B4E9",
"#009E73",
"#F0E442")) +
# split in mulitple plots per group
facet_wrap(~gen_specnm2, nrow = 1, ncol=4) + #'facet_wrap' subsets by column value in dataframe
#define colour gradient for fill
# scale_fill_gradient2(low = "white", mid = "white", high = "blue",
# guide = guide_colorbar(order = 1)) +
#scale_fill_gradientn(colors = heat.colors(10),
scale_fill_gradientn(colors = alpha(c("white","red","black"),0.6),
guide = guide_colorbar(order = 1)) +
#define limits of map
ggplot2::coord_sf( #xlim = c(26, 32) ,
#xlim = c(30.5, 32),
xlim = c(30.5, 31.5),
#ylim = c(66, 74),
#ylim = c(69.4, 69.9),
ylim = c(69.4, 69.9),
default_crs = sf::st_crs(4326),
expand = FALSE)
p04 <- p04 + xlab("longitude") + ylab("latitude")
# see the plot
p04b <- p04
# you will have to change the legend for all legends
p04b <- p04b + labs(color='species')
p04b <- p04b + labs(fill='mean copies/ mL filt water')
p04b <- p04b + labs(shape='eDNA presence')
p04b
#define vector with S Norway species
NoNsp <- c("O. gorbuscha","O. mykiss",
"S. alpinus", "S. salar")
# subset data frame by matching the elements in the vector defined above
df04 <- subset(df03, subset = gen_specnm2 %in% NoNsp)
#_______________________________________________________________________________
# also see : https://github.com/tidyverse/ggplot2/issues/2037
# also see : https://github.com/tidyverse/ggplot2/issues/2037
p05 <-
ggplot(data = norw_map) +
#ggplot(st_transform(norw_map, 9122)) +
geom_sf(color = "black", fill = "azure3") +
geom_jitter(data = df04,
aes(x = dlon, y = dlat, #,
color=gen_specnm2,
fill=SQmean,
shape=eval1),
width = jitlvl, #0.07, jitter width
height = jitlvl, #0.07, # jitter height
size = 4) +
#define shape of points
scale_shape_manual(values=c(21,3)) +
# define outline of each pch point
scale_color_manual(values=c("#E69F00", "#56B4E9",
"#009E73",
"#F0E442")) +
# split in mulitple plots per group
facet_wrap(~gen_specnm2, nrow = 1, ncol=4) + #'facet_wrap' subsets by column value in dataframe
#define colour gradient for fill
# scale_fill_gradient2(low = "white", mid = "white", high = "blue",
# guide = guide_colorbar(order = 1)) +
#scale_fill_gradientn(colors = heat.colors(10),
scale_fill_gradientn(colors = alpha(c("white","red","black"),0.6),
guide = guide_colorbar(order = 1)) +
#define limits of map
ggplot2::coord_sf( #xlim = c(26, 32) ,
#xlim = c(30.5, 32),
xlim = c(10, 36),
#ylim = c(66, 74),
ylim = c(76.6, 80.8),
#ylim = c(69, 83),
default_crs = sf::st_crs(4326),
expand = FALSE)
p05 <- p05 + xlab("longitude") + ylab("latitude")
# see the plot
p05b <- p05
# you will have to change the legend for all legends
p05b <- p05b + labs(color='species')
p05b <- p05b + labs(fill='mean copies/ mL filt water')
p05b <- p05b + labs(shape='eDNA presence')
p05b
#define the path for the directory where the unzipped downloaded river files are placed
#rpath_Norway_rivers <- "NVE_60751B14_1635507782111_11488/NVEData/Elv"
#paste path together
#rpath_NR <- paste(wd00,"/",rpath_Norway_rivers,sep="")
rpath_NR <- "/home/hal9000/Documents/Documents/NIVA_Ansaettelse_2021/fish_eDNA_210130/NVE_60751B14_1635507782111_11488/NVEData/Elv"
# read in the river shape files
rnet = rgdal::readOGR(rpath_NR, "Elv_Hovedelv")
rpath_Norway_rivers <- "NVEData/Elv"
# if not then get the zip file. Unpack it. Make a path to the river shape
#directory and then remove the zip file
if (!exists("rpath_Norway_rivers"))
{print("missing shape file with rivers")
unlink("NVE_rivers.zip")
NVE_zip_file <- "https://www.dropbox.com/s/m1orkkdh9kq54ly/NVE_60751B14_1635507782111_11488.zip?dl=0"
download.file(NVE_zip_file, dest="NVE_rivers.zip", method="wget", quiet=T)
unzip ("NVE_rivers.zip", exdir = "./")
unlink("NVE_rivers.zip")
#define the path for the directory where the unzipped downloaded river files are placed
rpath_Norway_rivers <- "NVEData/Elv"
}
# p02b <- p02
# # you will have to change the legend for all legends
# p02b <- p02b + labs(color='species')
# p02b <- p02b + labs(fill='mean copies/ mL filt water')
# p02b <- p02b + labs(shape='eDNA presence')
# Label appearance ##http://www.cookbook-r.com/Graphs/Legends_(ggplot2)/
# filltxc = rep("black", noofspcsnms)
# filltxc[10] <- "red"
#p02b <- p02b + theme(legend.text = element_text(colour="blue", size = 10, face = "italic"))
p03 <- p02b + geom_path(data = rnet, aes(x = long, y = lat, group = group),
lwd=0.4,
color="blue")
p03
getwd()
# ------------- plot Combined figure -------------
library(patchwork)
# set a variable to TRUE to determine whether to save figures
bSaveFigures <- T
p <- p03
p03b <- p03
# # on how to arrange plots in patchwork
# p <- p01b +
# #
#
# plot_layout(nrow=3,byrow=T) + #xlab(xlabel) +
# plot_layout(guides = "collect") +
# plot_annotation(caption=fnm04) #& theme(legend.position = "bottom")
#p
fignm01 <- "mapplot_v01_eDNA_conc_from_6spcs"
fignm02 <- "mapplot_v02_eDNA_conc_from_Elus_Stru"
fignm03 <- "mapplot_v03_eDNA_conc_from_Elus_Stru"
fignm04 <- "mapplot_v04_eDNA_conc_from_4spcs_NNorway"
fignm05 <- "mapplot_v05_eDNA_conc_from_4spcs_Svalb"
#make filename to save plot to
flnm01.png <- paste0(fignm01,".png")
flnm01.pdf <- paste0(fignm01,".pdf")
flnm02.png <- paste0(fignm02,".png")
flnm02.pdf <- paste0(fignm02,".pdf")
flnm03.png <- paste0(fignm03,".png")
flnm03.pdf <- paste0(fignm03,".pdf")
flnm04.png <- paste0(fignm04,".png")
flnm04.pdf <- paste0(fignm04,".pdf")
flnm05.png <- paste0(fignm05,".png")
flnm05.pdf <- paste0(fignm05,".pdf")
lstplts <- c(p01b,p02b,
p03b,
p04b,p05b)
lst_pngnms <- c(flnm01.png,
flnm02.png,
flnm03.png,
flnm04.png,
flnm05.png)
lst_pdfnms <- c(flnm01.pdf,
flnm02.pdf,
flnm03.pdf,
flnm04.pdf,
flnm05.pdf)
nplt<- length(lstplts)
if(bSaveFigures==T){
ggsave(p01b,file=flnm01.png,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
ggsave(p01b,file=flnm01.pdf,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
}
if(bSaveFigures==T){
ggsave(p02b,file=flnm02.png,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
ggsave(p02b,file=flnm02.pdf,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
}
if(bSaveFigures==T){
ggsave(p03b,file=flnm03.png,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
ggsave(p03b,file=flnm03.pdf,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
}
if(bSaveFigures==T){
ggsave(p04b,file=flnm04.png,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
ggsave(p04b,file=flnm04.pdf,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
}
if(bSaveFigures==T){
ggsave(p05b,file=flnm05.png,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
ggsave(p05b,file=flnm05.pdf,
#width=210,height=297,
width=297,height=210,
units="mm",dpi=300)
}
#