-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalmabench.ml
411 lines (381 loc) · 13.5 KB
/
almabench.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
(*
* ALMABENCH 1.0.1
* Objective Caml version
*
* A number-crunching benchmark designed for cross-language and vendor
* comparisons.
*
* Written by Shawn Wagner, from Scott Robert Ladd's versions for
* C++ and java.
*
* No rights reserved. This is public domain software, for use by anyone.
*
* This program calculates the daily ephemeris (at noon) for the years
* 2000-2099 using an algorithm developed by J.L. Simon, P. Bretagnon, J.
* Chapront, M. Chapront-Touze, G. Francou and J. Laskar of the Bureau des
* Longitudes, Paris, France), as detailed in Astronomy & Astrophysics
* 282, 663 (1994)
*
* Note that the code herein is design for the purpose of testing
* computational performance; error handling and other such "niceties"
* is virtually non-existent.
*
* Actual (and oft-updated) benchmark results can be found at:
* http://www.coyotegulch.com
*
* Please do not use this information or algorithm in any way that might
* upset the balance of the universe or otherwise cause planets to impact
* upon one another.
*)
let pic = 3.14159265358979323846
and j2000 = 2451545.0
and jcentury = 36525.0
and jmillenia = 365250.0
let twopi = 2.0 *. pic
and a2r = pic /. 648000.0
and r2h = 12.0 /. pic
and r2d = 180.0 /. pic
and gaussk = 0.01720209895
(* number of days to include in test *)
let test_loops = 5
(* was: 20 *)
and test_length = 36525
(* sin and cos of j2000 mean obliquity (iau 1976) *)
and sineps = 0.3977771559319137
and coseps = 0.9174820620691818
and amas =
[| 6023600.0; 408523.5; 328900.5; 3098710.0; 1047.355; 3498.5; 22869.0; 19314.0 |]
(*
* tables giving the mean keplerian elements, limited to t**2 terms:
* a semi-major axis (au)
* dlm mean longitude (degree and arcsecond)
* e eccentricity
* pi longitude of the perihelion (degree and arcsecond)
* dinc inclination (degree and arcsecond)
* omega longitude of the ascending node (degree and arcsecond)
*)
and a =
[| [| 0.3870983098; 0.0; 0.0 |]
; [| 0.7233298200; 0.0; 0.0 |]
; [| 1.0000010178; 0.0; 0.0 |]
; [| 1.5236793419; 3e-10; 0.0 |]
; [| 5.2026032092; 19132e-10; -39e-10 |]
; [| 9.5549091915; -0.0000213896; 444e-10 |]
; [| 19.2184460618; -3716e-10; 979e-10 |]
; [| 30.1103868694; -16635e-10; 686e-10 |]
|]
and dlm =
[| [| 252.25090552; 5381016286.88982; -1.92789 |]
; [| 181.97980085; 2106641364.33548; 0.59381 |]
; [| 100.46645683; 1295977422.83429; -2.04411 |]
; [| 355.43299958; 689050774.93988; 0.94264 |]
; [| 34.35151874; 109256603.77991; -30.60378 |]
; [| 50.07744430; 43996098.55732; 75.61614 |]
; [| 314.05500511; 15424811.93933; -1.75083 |]
; [| 304.34866548; 7865503.20744; 0.21103 |]
|]
and e =
[| [| 0.2056317526; 0.0002040653; -28349e-10 |]
; [| 0.0067719164; -0.0004776521; 98127e-10 |]
; [| 0.0167086342; -0.0004203654; -0.0000126734 |]
; [| 0.0934006477; 0.0009048438; -80641e-10 |]
; [| 0.0484979255; 0.0016322542; -0.0000471366 |]
; [| 0.0555481426; -0.0034664062; -0.0000643639 |]
; [| 0.0463812221; -0.0002729293; 0.0000078913 |]
; [| 0.0094557470; 0.0000603263; 0.0 |]
|]
and pi =
[| [| 77.45611904; 5719.11590; -4.83016 |]
; [| 131.56370300; 175.48640; -498.48184 |]
; [| 102.93734808; 11612.35290; 53.27577 |]
; [| 336.06023395; 15980.45908; -62.32800 |]
; [| 14.33120687; 7758.75163; 259.95938 |]
; [| 93.05723748; 20395.49439; 190.25952 |]
; [| 173.00529106; 3215.56238; -34.09288 |]
; [| 48.12027554; 1050.71912; 27.39717 |]
|]
and dinc =
[| [| 7.00498625; -214.25629; 0.28977 |]
; [| 3.39466189; -30.84437; -11.67836 |]
; [| 0.0; 469.97289; -3.35053 |]
; [| 1.84972648; -293.31722; -8.11830 |]
; [| 1.30326698; -71.55890; 11.95297 |]
; [| 2.48887878; 91.85195; -17.66225 |]
; [| 0.77319689; -60.72723; 1.25759 |]
; [| 1.76995259; 8.12333; 0.08135 |]
|]
and omega =
[| [| 48.33089304; -4515.21727; -31.79892 |]
; [| 76.67992019; -10008.48154; -51.32614 |]
; [| 174.87317577; -8679.27034; 15.34191 |]
; [| 49.55809321; -10620.90088; -230.57416 |]
; [| 100.46440702; 6362.03561; 326.52178 |]
; [| 113.66550252; -9240.19942; -66.23743 |]
; [| 74.00595701; 2669.15033; 145.93964 |]
; [| 131.78405702; -221.94322; -0.78728 |]
|]
(* tables for trigonometric terms to be added to the mean elements
of the semi-major axes. *)
and kp =
[| [| 69613.0; 75645.0; 88306.0; 59899.0; 15746.0; 71087.0; 142173.0; 3086.0; 0.0 |]
; [| 21863.0; 32794.0; 26934.0; 10931.0; 26250.0; 43725.0; 53867.0; 28939.0; 0.0 |]
; [| 16002.0; 21863.0; 32004.0; 10931.0; 14529.0; 16368.0; 15318.0; 32794.0; 0.0 |]
; [| 6345.0; 7818.0; 15636.0; 7077.0; 8184.0; 14163.0; 1107.0; 4872.0; 0.0 |]
; [| 1760.0; 1454.0; 1167.0; 880.0; 287.0; 2640.0; 19.0; 2047.0; 1454.0 |]
; [| 574.0; 0.0; 880.0; 287.0; 19.0; 1760.0; 1167.0; 306.0; 574.0 |]
; [| 204.0; 0.0; 177.0; 1265.0; 4.0; 385.0; 200.0; 208.0; 204.0 |]
; [| 0.0; 102.0; 106.0; 4.0; 98.0; 1367.0; 487.0; 204.0; 0.0 |]
|]
and ca =
[| [| 4.0; -13.0; 11.0; -9.0; -9.0; -3.0; -1.0; 4.0; 0.0 |]
; [| -156.0; 59.0; -42.0; 6.0; 19.0; -20.0; -10.0; -12.0; 0.0 |]
; [| 64.0; -152.0; 62.0; -8.0; 32.0; -41.0; 19.0; -11.0; 0.0 |]
; [| 124.0; 621.0; -145.0; 208.0; 54.0; -57.0; 30.0; 15.0; 0.0 |]
; [| -23437.0; -2634.0; 6601.0; 6259.0; -1507.0; -1821.0; 2620.0; -2115.0; -1489.0 |]
; [| 62911.0
; -119919.0
; 79336.0
; 17814.0
; -24241.0
; 12068.0
; 8306.0
; -4893.0
; 8902.0
|]
; [| 389061.0
; -262125.0
; -44088.0
; 8387.0
; -22976.0
; -2093.0
; -615.0
; -9720.0
; 6633.0
|]
; [| -412235.0; -157046.0; -31430.0; 37817.0; -9740.0; -13.0; -7449.0; 9644.0; 0.0 |]
|]
and sa =
[| [| -29.0; -1.0; 9.0; 6.0; -6.0; 5.0; 4.0; 0.0; 0.0 |]
; [| -48.0; -125.0; -26.0; -37.0; 18.0; -13.0; -20.0; -2.0; 0.0 |]
; [| -150.0; -46.0; 68.0; 54.0; 14.0; 24.0; -28.0; 22.0; 0.0 |]
; [| -621.0; 532.0; -694.0; -20.0; 192.0; -94.0; 71.0; -73.0; 0.0 |]
; [| -14614.0; -19828.0; -5869.0; 1881.0; -4372.0; -2255.0; 782.0; 930.0; 913.0 |]
; [| 139737.0; 0.0; 24667.0; 51123.0; -5102.0; 7429.0; -4095.0; -1976.0; -9566.0 |]
; [| -138081.0
; 0.0
; 37205.0
; -49039.0
; -41901.0
; -33872.0
; -27037.0
; -12474.0
; 18797.0
|]
; [| 0.0; 28492.0; 133236.0; 69654.0; 52322.0; -49577.0; -26430.0; -3593.0; 0.0 |]
|]
(* tables giving the trigonometric terms to be added to the mean elements of
the mean longitudes . *)
and kq =
[| [| 3086.0; 15746.0; 69613.0; 59899.0; 75645.0; 88306.0; 12661.0; 2658.0; 0.0; 0.0 |]
; [| 21863.0; 32794.0; 10931.0; 73.0; 4387.0; 26934.0; 1473.0; 2157.0; 0.0; 0.0 |]
; [| 10.0; 16002.0; 21863.0; 10931.0; 1473.0; 32004.0; 4387.0; 73.0; 0.0; 0.0 |]
; [| 10.0; 6345.0; 7818.0; 1107.0; 15636.0; 7077.0; 8184.0; 532.0; 10.0; 0.0 |]
; [| 19.0; 1760.0; 1454.0; 287.0; 1167.0; 880.0; 574.0; 2640.0; 19.0; 1454.0 |]
; [| 19.0; 574.0; 287.0; 306.0; 1760.0; 12.0; 31.0; 38.0; 19.0; 574.0 |]
; [| 4.0; 204.0; 177.0; 8.0; 31.0; 200.0; 1265.0; 102.0; 4.0; 204.0 |]
; [| 4.0; 102.0; 106.0; 8.0; 98.0; 1367.0; 487.0; 204.0; 4.0; 102.0 |]
|]
and cl =
[| [| 21.0; -95.0; -157.0; 41.0; -5.0; 42.0; 23.0; 30.0; 0.0; 0.0 |]
; [| -160.0; -313.0; -235.0; 60.0; -74.0; -76.0; -27.0; 34.0; 0.0; 0.0 |]
; [| -325.0; -322.0; -79.0; 232.0; -52.0; 97.0; 55.0; -41.0; 0.0; 0.0 |]
; [| 2268.0; -979.0; 802.0; 602.0; -668.0; -33.0; 345.0; 201.0; -55.0; 0.0 |]
; [| 7610.0
; -4997.0
; -7689.0
; -5841.0
; -2617.0
; 1115.0
; -748.0
; -607.0
; 6074.0
; 354.0
|]
; [| -18549.0
; 30125.0
; 20012.0
; -730.0
; 824.0
; 23.0
; 1289.0
; -352.0
; -14767.0
; -2062.0
|]
; [| -135245.0
; -14594.0
; 4197.0
; -4030.0
; -5630.0
; -2898.0
; 2540.0
; -306.0
; 2939.0
; 1986.0
|]
; [| 89948.0; 2103.0; 8963.0; 2695.0; 3682.0; 1648.0; 866.0; -154.0; -1963.0; -283.0 |]
|]
and sl =
[| [| -342.0; 136.0; -23.0; 62.0; 66.0; -52.0; -33.0; 17.0; 0.0; 0.0 |]
; [| 524.0; -149.0; -35.0; 117.0; 151.0; 122.0; -71.0; -62.0; 0.0; 0.0 |]
; [| -105.0; -137.0; 258.0; 35.0; -116.0; -88.0; -112.0; -80.0; 0.0; 0.0 |]
; [| 854.0; -205.0; -936.0; -240.0; 140.0; -341.0; -97.0; -232.0; 536.0; 0.0 |]
; [| -56980.0; 8016.0; 1012.0; 1448.0; -3024.0; -3710.0; 318.0; 503.0; 3767.0; 577.0 |]
; [| 138606.0
; -13478.0
; -4964.0
; 1441.0
; -1319.0
; -1482.0
; 427.0
; 1236.0
; -9167.0
; -1918.0
|]
; [| 71234.0
; -41116.0
; 5334.0
; -4935.0
; -1848.0
; 66.0
; 434.0
; -1748.0
; 3780.0
; -701.0
|]
; [| -47645.0; 11647.0; 2166.0; 3194.0; 679.0; 0.0; -244.0; -419.0; -2531.0; 48.0 |]
|]
(* Normalize angle into the range -pi <= A < +pi. *)
let anpm a =
let w = mod_float a twopi in
if abs_float w >= pic then if a < 0.0 then w +. twopi else w -. twopi else w
(* The reference frame is equatorial and is with respect to the
* mean equator and equinox of epoch j2000. *)
let planetpv epoch np pv =
(* time: julian millennia since j2000. *)
let t = (epoch.(0) -. j2000 +. epoch.(1)) /. jmillenia in
(* compute the mean elements. *)
let da = ref (a.(np).(0) +. ((a.(np).(1) +. (a.(np).(2) *. t)) *. t))
and dl =
ref (((3600.0 *. dlm.(np).(0)) +. ((dlm.(np).(1) +. (dlm.(np).(2) *. t)) *. t)) *. a2r)
and de = e.(np).(0) +. ((e.(np).(1) +. (e.(np).(2) *. t)) *. t)
and dp =
anpm (((3600.0 *. pi.(np).(0)) +. ((pi.(np).(1) +. (pi.(np).(2) *. t)) *. t)) *. a2r)
and di =
((3600.0 *. dinc.(np).(0)) +. ((dinc.(np).(1) +. (dinc.(np).(2) *. t)) *. t)) *. a2r
and doh =
anpm
(((3600.0 *. omega.(np).(0)) +. ((omega.(np).(1) +. (omega.(np).(2) *. t)) *. t))
*. a2r)
(* apply the trigonometric terms. *)
and dmu = 0.35953620 *. t in
(* loop invariant *)
let kp = kp.(np)
and kq = kq.(np)
and ca = ca.(np)
and sa = sa.(np)
and cl = cl.(np)
and sl = sl.(np) in
for k = 0 to 7 do
let arga = kp.(k) *. dmu and argl = kq.(k) *. dmu in
da := !da +. (((ca.(k) *. cos arga) +. (sa.(k) *. sin arga)) *. 0.0000001);
dl := !dl +. (((cl.(k) *. cos argl) +. (sl.(k) *. sin argl)) *. 0.0000001)
done;
(let arga = kp.(8) *. dmu in
da := !da +. (t *. ((ca.(8) *. cos arga) +. (sa.(8) *. sin arga)) *. 0.0000001);
for k = 8 to 9 do
let argl = kq.(k) *. dmu in
dl := !dl +. (t *. ((cl.(k) *. cos argl) +. (sl.(k) *. sin argl)) *. 0.0000001)
done);
dl := mod_float !dl twopi;
(* iterative solution of kepler's equation to get eccentric anomaly. *)
let am = !dl -. dp in
let ae = ref (am +. (de *. sin am)) and k = ref 0 in
let dae = ref ((am -. !ae +. (de *. sin !ae)) /. (1.0 -. (de *. cos !ae))) in
ae := !ae +. !dae;
incr k;
while !k < 10 || abs_float !dae >= 1e-12 do
dae := (am -. !ae +. (de *. sin !ae)) /. (1.0 -. (de *. cos !ae));
ae := !ae +. !dae;
incr k
done;
(* true anomaly. *)
let ae2 = !ae /. 2.0 in
let at = 2.0 *. atan2 (sqrt ((1.0 +. de) /. (1.0 -. de)) *. sin ae2) (cos ae2)
(* distance (au) and speed (radians per day). *)
and r = !da *. (1.0 -. (de *. cos !ae))
and v = gaussk *. sqrt ((1.0 +. (1.0 /. amas.(np))) /. (!da *. !da *. !da))
and si2 = sin (di /. 2.0) in
let xq = si2 *. cos doh and xp = si2 *. sin doh and tl = at +. dp in
let xsw = sin tl and xcw = cos tl in
let xm2 = 2.0 *. ((xp *. xcw) -. (xq *. xsw))
and xf = !da /. sqrt (1.0 -. (de *. de))
and ci2 = cos (di /. 2.0) in
let xms = ((de *. sin dp) +. xsw) *. xf
and xmc = ((de *. cos dp) +. xcw) *. xf
and xpxq2 = 2.0 *. xp *. xq in
(* position (j2000 ecliptic x,y,z in au). *)
let x = r *. (xcw -. (xm2 *. xp))
and y = r *. (xsw +. (xm2 *. xq))
and z = r *. (-.xm2 *. ci2) in
(* rotate to equatorial. *)
pv.(0).(0) <- x;
pv.(0).(1) <- (y *. coseps) -. (z *. sineps);
pv.(0).(2) <- (y *. sineps) +. (z *. coseps);
(* velocity (j2000 ecliptic xdot,ydot,zdot in au/d). *)
let x = v *. (((-1.0 +. (2.0 *. xp *. xp)) *. xms) +. (xpxq2 *. xmc))
and y = v *. (((1.0 -. (2.0 *. xq *. xq)) *. xmc) -. (xpxq2 *. xms))
and z = v *. (2.0 *. ci2 *. ((xp *. xms) +. (xq *. xmc))) in
(* rotate to equatorial *)
pv.(1).(0) <- x;
pv.(1).(1) <- (y *. coseps) -. (z *. sineps);
pv.(1).(2) <- (y *. sineps) +. (z *. coseps)
(* Computes RA, Declination, and distance from a state vector returned by
* planetpv. *)
let radecdist state rdd =
(* Distance *)
rdd.(2) <-
sqrt
((state.(0).(0) *. state.(0).(0))
+. (state.(0).(1) *. state.(0).(1))
+. (state.(0).(2) *. state.(0).(2)));
(* RA *)
rdd.(0) <- atan2 state.(0).(1) state.(0).(0) *. r2h;
if rdd.(0) < 0.0 then rdd.(0) <- rdd.(0) +. 24.0;
(* Declination *)
rdd.(1) <- asin (state.(0).(2) /. rdd.(2)) *. r2d
(* Entry point. Calculate RA and Dec for noon on every day in 1900-2100 *)
let _ =
let jd = [| 0.0; 0.0 |]
and pv = [| [| 0.0; 0.0; 0.0 |]; [| 0.0; 0.0; 0.0 |] |]
and position = [| 0.0; 0.0; 0.0 |] in
(* Test *)
jd.(0) <- j2000;
jd.(1) <- 1.0;
for p = 0 to 7 do
planetpv jd p pv;
radecdist pv position
(* Printf.printf "%d %.2f %.2f\n%!" p position.(0) position.(1)*)
done;
(* Benchmark *)
for _ = 0 to test_loops - 1 do
jd.(0) <- j2000;
jd.(1) <- 0.0;
for _ = 0 to test_length - 1 do
jd.(0) <- jd.(0) +. 1.0;
for p = 0 to 7 do
planetpv jd p pv;
radecdist pv position
done
done
done