-
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathr_keygen.c
167 lines (129 loc) · 5.25 KB
/
r_keygen.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
R_KEYGEN.C - key-pair generation for RSAEURO
Copyright (c) J.S.A.Kapp 1994 - 1996.
RSAEURO - RSA Library compatible with RSAREF(tm) 2.0.
All functions prototypes are the Same as for RSAREF(tm).
To aid compatiblity the source and the files follow the
same naming comventions that RSAREF(tm) uses. This should aid
direct importing to you applications.
This library is legal everywhere outside the US. And should
NOT be imported to the US and used there.
All Trademarks Acknowledged.
Revision history
0.90 First revision, produced to perform just like the
RSAREF(tm) version.
0.91 Second revision, minor modifications to RSAFilter routine
and method. Result minor speed increase.
*/
#include "rsaeuro.h"
#include "r_random.h"
#include "nn.h"
#include "prime.h"
static int RSAFilter PROTO_LIST
((NN_DIGIT *, unsigned int, NN_DIGIT *, unsigned int));
/* Generates an RSA key pair with a given length and public exponent. */
int R_GeneratePEMKeys(publicKey, privateKey, protoKey, randomStruct)
R_RSA_PUBLIC_KEY *publicKey; /* new RSA public key */
R_RSA_PRIVATE_KEY *privateKey; /* new RSA private key */
R_RSA_PROTO_KEY *protoKey; /* RSA prototype key */
R_RANDOM_STRUCT *randomStruct; /* random structure */
{
NN_DIGIT d[MAX_NN_DIGITS], dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS],
e[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], phiN[MAX_NN_DIGITS],
pMinus1[MAX_NN_DIGITS], q[MAX_NN_DIGITS], qInv[MAX_NN_DIGITS],
qMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS], u[MAX_NN_DIGITS],
v[MAX_NN_DIGITS];
int status;
unsigned int nDigits, pBits, pDigits, qBits;
if((protoKey->bits < MIN_RSA_MODULUS_BITS) || (protoKey->bits > MAX_RSA_MODULUS_BITS))
return(RE_MODULUS_LEN);
nDigits = (protoKey->bits + NN_DIGIT_BITS - 1) / NN_DIGIT_BITS;
pDigits = (nDigits + 1) / 2;
pBits = (protoKey->bits + 1) / 2;
qBits = protoKey->bits - pBits;
/* NB: for 65537, this means that NN_DIGIT is at least 17 bits
in length. */
NN_ASSIGN_DIGIT(e, protoKey->useFermat4 ? (NN_DIGIT)65537 : (NN_DIGIT)3, nDigits);
/* Generate prime p between 3*2^(pBits-2) and 2^pBits-1, searching
in steps of 2, until one satisfies gcd (p-1, e) = 1. */
NN_Assign2Exp(t, pBits-1, pDigits);
NN_Assign2Exp(u, pBits-2, pDigits);
NN_Add(t, t, u, pDigits);
NN_ASSIGN_DIGIT(v, 1, pDigits);
NN_Sub(v, t, v, pDigits);
NN_Add(u, u, v, pDigits);
NN_ASSIGN_DIGIT(v, 2, pDigits);
do {
if(status = GeneratePrime(p, t, u, v, pDigits, randomStruct))
return(status);
}while(!RSAFilter(p, pDigits, e, 1));
/* Generate prime q between 3*2^(qBits-2) and 2^qBits-1, searching
in steps of 2, until one satisfies gcd (q-1, e) = 1. */
NN_Assign2Exp(t, qBits-1, pDigits);
NN_Assign2Exp(u, qBits-2, pDigits);
NN_Add(t, t, u, pDigits);
NN_ASSIGN_DIGIT(v, 1, pDigits);
NN_Sub(v, t, v, pDigits);
NN_Add(u, u, v, pDigits);
NN_ASSIGN_DIGIT(v, 2, pDigits);
do {
if(status = GeneratePrime(q, t, u, v, pDigits, randomStruct))
return(status);
}while(!RSAFilter(q, pDigits, e, 1));
/* Sort so that p > q. (p = q case is extremely unlikely. */
if(NN_Cmp(p, q, pDigits) < 0) {
NN_Assign(t, p, pDigits);
NN_Assign(p, q, pDigits);
NN_Assign(q, t, pDigits);
}
/* Compute n = pq, qInv = q^{-1} mod p, d = e^{-1} mod (p-1)(q-1),
dP = d mod p-1, dQ = d mod q-1. */
NN_Mult(n, p, q, pDigits);
NN_ModInv(qInv, q, p, pDigits);
NN_ASSIGN_DIGIT(t, 1, pDigits);
NN_Sub(pMinus1, p, t, pDigits);
NN_Sub(qMinus1, q, t, pDigits);
NN_Mult(phiN, pMinus1, qMinus1, pDigits);
NN_ModInv(d, e, phiN, nDigits);
NN_Mod(dP, d, nDigits, pMinus1, pDigits);
NN_Mod(dQ, d, nDigits, qMinus1, pDigits);
publicKey->bits = privateKey->bits = protoKey->bits;
NN_Encode(publicKey->modulus, MAX_RSA_MODULUS_LEN, n, nDigits);
NN_Encode(publicKey->exponent, MAX_RSA_MODULUS_LEN, e, 1);
R_memcpy((POINTER)privateKey->modulus, (POINTER)publicKey->modulus, MAX_RSA_MODULUS_LEN);
R_memcpy((POINTER)privateKey->publicExponent, (POINTER)publicKey->exponent, MAX_RSA_MODULUS_LEN);
NN_Encode(privateKey->exponent, MAX_RSA_MODULUS_LEN, d, nDigits);
NN_Encode(privateKey->prime[0], MAX_RSA_PRIME_LEN, p, pDigits);
NN_Encode(privateKey->prime[1], MAX_RSA_PRIME_LEN, q, pDigits);
NN_Encode(privateKey->primeExponent[0], MAX_RSA_PRIME_LEN, dP, pDigits);
NN_Encode(privateKey->primeExponent[1], MAX_RSA_PRIME_LEN, dQ, pDigits);
NN_Encode(privateKey->coefficient, MAX_RSA_PRIME_LEN, qInv, pDigits);
/* Clear sensitive information. */
R_memset((POINTER)d, 0, sizeof(d));
R_memset((POINTER)dP, 0, sizeof(dP));
R_memset((POINTER)dQ, 0, sizeof(dQ));
R_memset((POINTER)p, 0, sizeof(p));
R_memset((POINTER)phiN, 0, sizeof(phiN));
R_memset((POINTER)pMinus1, 0, sizeof(pMinus1));
R_memset((POINTER)q, 0, sizeof(q));
R_memset((POINTER)qInv, 0, sizeof(qInv));
R_memset((POINTER)qMinus1, 0, sizeof(qMinus1));
R_memset((POINTER)t, 0, sizeof(t));
return (0);
}
/* Returns nonzero iff GCD (a-1, b) = 1.
Assumes aDigits < MAX_NN_DIGITS, bDigits < MAX_NN_DIGITS. */
static int RSAFilter(a, aDigits, b, bDigits)
NN_DIGIT *a, *b;
unsigned int aDigits, bDigits;
{
int status = 0;
NN_DIGIT aMinus1[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
NN_DIGIT u[MAX_NN_DIGITS];
NN_ASSIGN_DIGIT(t, 1, aDigits);
NN_Sub(aMinus1, a, t, aDigits);
NN_Gcd(u, aMinus1, b, aDigits);
status = NN_EQUAL(t, u, aDigits);
R_memset((POINTER)aMinus1, 0, sizeof(aMinus1));
return(status);
}