-
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathrsa.c
363 lines (263 loc) · 10.1 KB
/
rsa.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
RSA.C - RSA routines for RSAEURO
Copyright (c) J.S.A.Kapp 1994 - 1996.
RSAEURO - RSA Library compatible with RSAREF(tm) 2.0.
All functions prototypes are the Same as for RSAREF(tm).
To aid compatiblity the source and the files follow the
same naming comventions that RSAREF(tm) uses. This should aid
direct importing to your applications.
This library is legal everywhere outside the US. And should
NOT be imported to the US and used there.
All Trademarks Acknowledged.
RSA encryption performed as defined in the PKCS (#1) by RSADSI.
Revision history
0.90 First revision, code produced very similar to that
of RSAREF(tm), still it worked fine.
0.91 Second revision, code altered to aid speeding up.
Used pointer accesses to arrays to speed up some parts,
mainly during the loops.
1.03 Third revision, Random Structure initialization
double check, RSAPublicEncrypt can now return RE_NEED_RANDOM.
*/
#include "rsaeuro.h"
#include "r_random.h"
#include "rsa.h"
#include "nn.h"
static int rsapublicfunc PROTO_LIST((unsigned char *, unsigned int *, unsigned char *, unsigned int, R_RSA_PUBLIC_KEY *));
static int rsaprivatefunc PROTO_LIST((unsigned char *, unsigned int *, unsigned char *, unsigned int, R_RSA_PRIVATE_KEY *));
/* RSA encryption, according to RSADSI's PKCS #1. */
int RSAPublicEncrypt(output, outputLen, input, inputLen, publicKey, randomStruct)
unsigned char *output; /* output block */
unsigned int *outputLen; /* length of output block */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
R_RSA_PUBLIC_KEY *publicKey; /* RSA public key */
R_RANDOM_STRUCT *randomStruct; /* random structure */
{
int status;
unsigned char byte, pkcsBlock[MAX_RSA_MODULUS_LEN];
unsigned int i, modulusLen;
modulusLen = (publicKey->bits + 7) / 8;
if(inputLen + 11 > modulusLen)
return(RE_LEN);
R_GetRandomBytesNeeded(&i, randomStruct);
if(i != 0)
return(RE_NEED_RANDOM);
*pkcsBlock = 0; /* PKCS Block Makeup */
/* block type 2 */
*(pkcsBlock+1) = 2;
for(i = 2; i < modulusLen - inputLen - 1; i++) {
/* Find nonzero random byte. */
do { /* random bytes used to pad the PKCS Block */
R_GenerateBytes(&byte, 1, randomStruct);
}while(byte == 0);
*(pkcsBlock+i) = byte;
}
/* separator */
pkcsBlock[i++] = 0;
R_memcpy((POINTER)&pkcsBlock[i], (POINTER)input, inputLen);
status = rsapublicfunc(output, outputLen, pkcsBlock, modulusLen, publicKey);
/* Clear sensitive information. */
byte = 0;
R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));
return(status);
}
/* RSA decryption, according to RSADSI's PKCS #1. */
int RSAPublicDecrypt(output, outputLen, input, inputLen, publicKey)
unsigned char *output; /* output block */
unsigned int *outputLen; /* length of output block */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
R_RSA_PUBLIC_KEY *publicKey; /* RSA public key */
{
int status;
unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
unsigned int i, modulusLen, pkcsBlockLen;
modulusLen = (publicKey->bits + 7) / 8;
if(inputLen > modulusLen)
return(RE_LEN);
status = rsapublicfunc(pkcsBlock, &pkcsBlockLen, input, inputLen, publicKey);
if(status)
return(status);
if(pkcsBlockLen != modulusLen)
return(RE_LEN);
/* Require block type 1. */
if((pkcsBlock[0] != 0) || (pkcsBlock[1] != 1))
return(RE_DATA);
for(i = 2; i < modulusLen-1; i++)
if(*(pkcsBlock+i) != 0xff)
break;
/* separator check */
if(pkcsBlock[i++] != 0)
return(RE_DATA);
*outputLen = modulusLen - i;
if(*outputLen + 11 > modulusLen)
return(RE_DATA);
R_memcpy((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen);
/* Clear sensitive information. */
R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));
return(ID_OK);
}
/* RSA encryption, according to RSADSI's PKCS #1. */
int RSAPrivateEncrypt(output, outputLen, input, inputLen, privateKey)
unsigned char *output; /* output block */
unsigned int *outputLen; /* length of output block */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
R_RSA_PRIVATE_KEY *privateKey; /* RSA private key */
{
int status;
unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
unsigned int i, modulusLen;
modulusLen = (privateKey->bits + 7) / 8;
if(inputLen + 11 > modulusLen)
return (RE_LEN);
*pkcsBlock = 0;
/* block type 1 */
*(pkcsBlock+1) = 1;
for (i = 2; i < modulusLen - inputLen - 1; i++)
*(pkcsBlock+i) = 0xff;
/* separator */
pkcsBlock[i++] = 0;
R_memcpy((POINTER)&pkcsBlock[i], (POINTER)input, inputLen);
status = rsaprivatefunc(output, outputLen, pkcsBlock, modulusLen, privateKey);
/* Clear sensitive information. */
R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));
return(status);
}
/* RSA decryption, according to RSADSI's PKCS #1. */
int RSAPrivateDecrypt(output, outputLen, input, inputLen, privateKey)
unsigned char *output; /* output block */
unsigned int *outputLen; /* length of output block */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
R_RSA_PRIVATE_KEY *privateKey; /* RSA private key */
{
int status;
unsigned char pkcsBlock[MAX_RSA_MODULUS_LEN];
unsigned int i, modulusLen, pkcsBlockLen;
modulusLen = (privateKey->bits + 7) / 8;
if(inputLen > modulusLen)
return (RE_LEN);
status = rsaprivatefunc(pkcsBlock, &pkcsBlockLen, input, inputLen, privateKey);
if(status)
return (status);
if(pkcsBlockLen != modulusLen)
return (RE_LEN);
/* We require block type 2. */
if((*pkcsBlock != 0) || (*(pkcsBlock+1) != 2))
return (RE_DATA);
for(i = 2; i < modulusLen-1; i++)
/* separator */
if (*(pkcsBlock+i) == 0)
break;
i++;
if(i >= modulusLen)
return(RE_DATA);
*outputLen = modulusLen - i;
if(*outputLen + 11 > modulusLen)
return(RE_DATA);
R_memcpy((POINTER)output, (POINTER)&pkcsBlock[i], *outputLen);
/* Clear sensitive information. */
R_memset((POINTER)pkcsBlock, 0, sizeof(pkcsBlock));
return(ID_OK);
}
/* Raw RSA public-key operation. Output has same length as modulus.
Requires input < modulus.
*/
static int rsapublicfunc(output, outputLen, input, inputLen, publicKey)
unsigned char *output; /* output block */
unsigned int *outputLen; /* length of output block */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
R_RSA_PUBLIC_KEY *publicKey; /* RSA public key */
{
NN_DIGIT c[MAX_NN_DIGITS], e[MAX_NN_DIGITS], m[MAX_NN_DIGITS],
n[MAX_NN_DIGITS];
unsigned int eDigits, nDigits;
/* decode the required RSA function input data */
NN_Decode(m, MAX_NN_DIGITS, input, inputLen);
NN_Decode(n, MAX_NN_DIGITS, publicKey->modulus, MAX_RSA_MODULUS_LEN);
NN_Decode(e, MAX_NN_DIGITS, publicKey->exponent, MAX_RSA_MODULUS_LEN);
nDigits = NN_Digits(n, MAX_NN_DIGITS);
eDigits = NN_Digits(e, MAX_NN_DIGITS);
if(NN_Cmp(m, n, nDigits) >= 0)
return(RE_DATA);
*outputLen = (publicKey->bits + 7) / 8;
/* Compute c = m^e mod n. To perform actual RSA calc.*/
NN_ModExp (c, m, e, eDigits, n, nDigits);
/* encode output to standard form */
NN_Encode (output, *outputLen, c, nDigits);
/* Clear sensitive information. */
R_memset((POINTER)c, 0, sizeof(c));
R_memset((POINTER)m, 0, sizeof(m));
return(ID_OK);
}
/* Raw RSA private-key operation. Output has same length as modulus.
Requires input < modulus.
*/
static int rsaprivatefunc(output, outputLen, input, inputLen, privateKey)
unsigned char *output; /* output block */
unsigned int *outputLen; /* length of output block */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */
R_RSA_PRIVATE_KEY *privateKey; /* RSA private key */
{
NN_DIGIT c[MAX_NN_DIGITS], cP[MAX_NN_DIGITS], cQ[MAX_NN_DIGITS],
dP[MAX_NN_DIGITS], dQ[MAX_NN_DIGITS], mP[MAX_NN_DIGITS],
mQ[MAX_NN_DIGITS], n[MAX_NN_DIGITS], p[MAX_NN_DIGITS], q[MAX_NN_DIGITS],
qInv[MAX_NN_DIGITS], t[MAX_NN_DIGITS];
unsigned int cDigits, nDigits, pDigits;
/* decode required input data from standard form */
NN_Decode(c, MAX_NN_DIGITS, input, inputLen); /* input */
/* private key data */
NN_Decode(p, MAX_NN_DIGITS, privateKey->prime[0], MAX_RSA_PRIME_LEN);
NN_Decode(q, MAX_NN_DIGITS, privateKey->prime[1], MAX_RSA_PRIME_LEN);
NN_Decode(dP, MAX_NN_DIGITS, privateKey->primeExponent[0], MAX_RSA_PRIME_LEN);
NN_Decode(dQ, MAX_NN_DIGITS, privateKey->primeExponent[1], MAX_RSA_PRIME_LEN);
NN_Decode(n, MAX_NN_DIGITS, privateKey->modulus, MAX_RSA_MODULUS_LEN);
NN_Decode(qInv, MAX_NN_DIGITS, privateKey->coefficient, MAX_RSA_PRIME_LEN);
/* work out lengths of input components */
cDigits = NN_Digits(c, MAX_NN_DIGITS);
pDigits = NN_Digits(p, MAX_NN_DIGITS);
nDigits = NN_Digits(n, MAX_NN_DIGITS);
if(NN_Cmp(c, n, nDigits) >= 0)
return(RE_DATA);
*outputLen = (privateKey->bits + 7) / 8;
/* Compute mP = cP^dP mod p and mQ = cQ^dQ mod q. (Assumes q has
length at most pDigits, i.e., p > q.)
*/
NN_Mod(cP, c, cDigits, p, pDigits);
NN_Mod(cQ, c, cDigits, q, pDigits);
NN_AssignZero(mP, nDigits);
NN_ModExp(mP, cP, dP, pDigits, p, pDigits);
NN_AssignZero(mQ, nDigits);
NN_ModExp(mQ, cQ, dQ, pDigits, q, pDigits);
/* Chinese Remainder Theorem:
m = ((((mP - mQ) mod p) * qInv) mod p) * q + mQ.
*/
if(NN_Cmp(mP, mQ, pDigits) >= 0) {
NN_Sub(t, mP, mQ, pDigits);
}else{
NN_Sub(t, mQ, mP, pDigits);
NN_Sub(t, p, t, pDigits);
}
NN_ModMult(t, t, qInv, p, pDigits);
NN_Mult(t, t, q, pDigits);
NN_Add(t, t, mQ, nDigits);
/* encode output to standard form */
NN_Encode (output, *outputLen, t, nDigits);
/* Clear sensitive information. */
R_memset((POINTER)c, 0, sizeof(c));
R_memset((POINTER)cP, 0, sizeof(cP));
R_memset((POINTER)cQ, 0, sizeof(cQ));
R_memset((POINTER)dP, 0, sizeof(dP));
R_memset((POINTER)dQ, 0, sizeof(dQ));
R_memset((POINTER)mP, 0, sizeof(mP));
R_memset((POINTER)mQ, 0, sizeof(mQ));
R_memset((POINTER)p, 0, sizeof(p));
R_memset((POINTER)q, 0, sizeof(q));
R_memset((POINTER)qInv, 0, sizeof(qInv));
R_memset((POINTER)t, 0, sizeof(t));
return(ID_OK);
}