-
Notifications
You must be signed in to change notification settings - Fork 477
/
Copy pathex_diff_motion_detection.py
71 lines (56 loc) · 2.74 KB
/
ex_diff_motion_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python
#The MIT License (MIT)
#Copyright (c) 2016 Massimiliano Patacchiola
#
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
#MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
#CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
#SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#In this example the Diff motion detector is used to find moving
#objects in a video stream. The camera should be stationary.
#The background image is a frame representing the scene without objects,
#it should be passed in the setBackground() function and it is used
#internally as parameter of the absdiff function which return the
#pixels which are different between the background and the current frame.
#The contour with the largest area is isolated and a green rectangle
#is drawn around it in the output stream.
import numpy as np
import cv2
from deepgaze.motion_detection import DiffMotionDetector
from deepgaze.mask_analysis import BinaryMaskAnalyser
#Open the video file and loading the background image
video_capture = cv2.VideoCapture("./cars.avi")
background_image = cv2.imread("./background.png")
#Decalring the motion detector object and setting the background
my_motion_detector = DiffMotionDetector()
my_motion_detector.setBackground(background_image)
#Declaring the binary mask analyser object
my_mask_analyser = BinaryMaskAnalyser()
# Define the codec and create VideoWriter object
fourcc = cv2.cv.CV_FOURCC(*'XVID')
out = cv2.VideoWriter("./cars_deepgaze.avi", fourcc, 20.0, (1920,1080))
#Create the main window and move it
cv2.namedWindow('Video')
cv2.moveWindow('Video', 20, 20)
is_first_frame = True
while(True):
# Capture frame-by-frame
ret, frame = video_capture.read()
frame_mask = my_motion_detector.returnMask(frame)
#Uncomment if you want more information about the frame with
#with the largest area.
#cx, cy = my_mask_analyser.returnMaxAreaCenter(frame_mask)
#cnt = my_mask_analyser.returnMaxAreaContour(frame_mask)
if(my_mask_analyser.returnNumberOfContours(frame_mask) > 0):
x,y,w,h = my_mask_analyser.returnMaxAreaRectangle(frame_mask)
cv2.rectangle(frame, (x,y), (x+w,y+h), [0,255,0], 2)
#Writing in the output file
out.write(frame)
#Showing the frame and waiting
# for the exit command
if(frame is None): break #check for empty frames
cv2.imshow('Video', frame) #show on window
if cv2.waitKey(1) & 0xFF == ord('q'): break #Exit when Q is pressed
#Release the camera
video_capture.release()
print("Bye...")