-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathgold_price.py
84 lines (66 loc) · 2.38 KB
/
gold_price.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# This code is made by MRayan Asim
# Packages needed:
# pip install pandas
# pip install numpy
# pip install matplotlib
# pip install yfinance
# pip install seaborn
# pip install prophet
import yfinance as yf
import matplotlib.pyplot as plt
import seaborn as sns
from prophet import Prophet
import datetime
# Download historical gold price data from Yahoo Finance
def download_gold_data(end_date):
gold_data = yf.download("GC=F", start="2010-01-01", end=end_date, progress=False)
return gold_data
# Preprocess the data
def preprocess_data(data):
data = data.reset_index()
data.rename(columns={"Date": "ds", "Adj Close": "y"}, inplace=True)
return data[["ds", "y"]]
# Train the forecasting model using Prophet
def train_prophet_model(data):
model = Prophet(daily_seasonality=True)
model.fit(data)
return model
# Make prediction using the trained model
def make_prediction(model, num_days_ahead):
future = model.make_future_dataframe(
periods=num_days_ahead
) # Predict 'num_days_ahead' days ahead
forecast = model.predict(future)
return forecast
# Plot the predictions
def plot_predictions(data, forecast, num_days_ahead):
fig, ax = plt.subplots(figsize=(10, 6))
sns.lineplot(data=data, x="ds", y="y", label="Actual", ax=ax)
sns.lineplot(data=forecast, x="ds", y="yhat", label="Predicted", ax=ax)
sns.scatterplot(
data=forecast.tail(1),
x="ds",
y="yhat",
color="red",
label=f"{num_days_ahead}-Day Ahead Prediction",
ax=ax,
)
ax.set_title("Gold Price Prediction")
ax.set_xlabel("Date")
ax.set_ylabel("Gold Price (USD)")
plt.legend()
plt.show()
def main():
end_date = datetime.datetime.now().strftime("%Y-%m-%d")
gold_data = download_gold_data(end_date)
processed_data = preprocess_data(gold_data)
# Train the Prophet model using historical data
model = train_prophet_model(processed_data)
# Get user input for the number of days ahead to predict
num_days_ahead = int(input("Enter the number of days ahead for prediction: "))
# Make prediction for the specified number of days ahead
forecast = make_prediction(model, num_days_ahead)
# Plot the predictions
plot_predictions(processed_data, forecast, num_days_ahead)
if __name__ == "__main__":
main()