forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctional_test.py
122 lines (102 loc) · 4.25 KB
/
functional_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
from caffe2.python import core
from hypothesis import given
import hypothesis.strategies as st
import caffe2.python.hypothesis_test_util as hu
from caffe2.python import workspace
from caffe2.python.functional import Functional
import numpy as np
@st.composite
def _tensor_splits(draw, add_axis=False):
"""Generates (axis, split_info, tensor_splits) tuples."""
tensor = draw(hu.tensor(min_value=4)) # Each dim has at least 4 elements.
axis = draw(st.integers(0, len(tensor.shape) - 1))
if add_axis:
# Simple case: get individual slices along one axis, where each of them
# is (N-1)-dimensional. The axis will be added back upon concatenation.
return (
axis, np.ones(tensor.shape[axis], dtype=np.int32), [
np.array(tensor.take(i, axis=axis))
for i in range(tensor.shape[axis])
]
)
else:
# General case: pick some (possibly consecutive, even non-unique)
# indices at which we will split the tensor, along the given axis.
splits = sorted(
draw(
st.
lists(elements=st.integers(0, tensor.shape[axis]), max_size=4)
) + [0, tensor.shape[axis]]
)
return (
axis, np.array(np.diff(splits), dtype=np.int32), [
tensor.take(range(splits[i], splits[i + 1]), axis=axis)
for i in range(len(splits) - 1)
],
)
class TestFunctional(hu.HypothesisTestCase):
@given(X=hu.tensor(), engine=st.sampled_from(["", "CUDNN"]), **hu.gcs)
def test_relu(self, X, engine, gc, dc):
X += 0.02 * np.sign(X)
X[X == 0.0] += 0.02
output = Functional.Relu(X, device_option=gc)
Y_l = output[0]
Y_d = output["output_0"]
with workspace.WorkspaceGuard("tmp_workspace"):
op = core.CreateOperator("Relu", ["X"], ["Y"], engine=engine)
workspace.FeedBlob("X", X)
workspace.RunOperatorOnce(op)
Y_ref = workspace.FetchBlob("Y")
np.testing.assert_array_equal(
Y_l, Y_ref, err_msg='Functional Relu result mismatch'
)
np.testing.assert_array_equal(
Y_d, Y_ref, err_msg='Functional Relu result mismatch'
)
@given(tensor_splits=_tensor_splits(), **hu.gcs)
def test_concat(self, tensor_splits, gc, dc):
# Input Size: 1 -> inf
axis, _, splits = tensor_splits
concat_result, split_info = Functional.Concat(*splits, axis=axis, device_option=gc)
concat_result_ref = np.concatenate(splits, axis=axis)
split_info_ref = np.array([a.shape[axis] for a in splits])
np.testing.assert_array_equal(
concat_result,
concat_result_ref,
err_msg='Functional Concat result mismatch'
)
np.testing.assert_array_equal(
split_info,
split_info_ref,
err_msg='Functional Concat split info mismatch'
)
@given(tensor_splits=_tensor_splits(), split_as_arg=st.booleans(), **hu.gcs)
def test_split(self, tensor_splits, split_as_arg, gc, dc):
# Output Size: 1 - inf
axis, split_info, splits = tensor_splits
split_as_arg = True
if split_as_arg:
input_tensors = [np.concatenate(splits, axis=axis)]
kwargs = dict(axis=axis, split=split_info, num_output=len(splits))
else:
input_tensors = [np.concatenate(splits, axis=axis), split_info]
kwargs = dict(axis=axis, num_output=len(splits))
result = Functional.Split(*input_tensors, device_option=gc, **kwargs)
def split_ref(input, split=split_info):
s = np.cumsum([0] + list(split))
return [
np.array(input.take(np.arange(s[i], s[i + 1]), axis=axis))
for i in range(len(split))
]
result_ref = split_ref(*input_tensors)
for i, ref in enumerate(result_ref):
np.testing.assert_array_equal(
result[i], ref, err_msg='Functional Relu result mismatch'
)
if __name__ == '__main__':
unittest.main()